Определить истинный вид параллелограмма. "параллелограмм и его свойства"

09.10.2019 Котлы

1. Определение параллелограмма.

Если пару параллельных прямых пересечём другой парой параллельных прямых, то получим четырёхугольник, у которого противоположные стороны попарно параллельны.

В четырёхугольниках ABDС и ЕFNМ (рис. 224) ВD || АС и AB || СD;

ЕF || МN и ЕМ || FN.

Четырёхугольник, у которого противоположные стороны попарно параллельны, называется параллелограммом.

2. Свойства параллелограмма.

Теорема . Диагональ параллелограмма делит его на два равных треугольника.

Пусть имеется параллелограмм ABDС (рис. 225), в котором AB || СD и АС || ВD.

Требуется доказать, что диагональ делит его на два равных треугольника.

Проведём в параллелограмме ABDС диагональ СВ. Докажем, что \(\Delta\)CAB = \(\Delta\)СDВ.

Сторона СВ общая для этих треугольников; ∠ABC = ∠BCD, как внутренние накрест лежащие углы при параллельных AB и СD и секущей СВ; ∠ACB = ∠СВD, тоже как внутренние накрест лежащие углы при параллельных АС и ВD и секущей CB.

Отсюда \(\Delta\)CAB = \(\Delta\)СDВ.

Таким же путём можно доказать, что диагональ AD разделит параллелограмм на два равных треугольника АСD и ABD.

Следствия:

1 . Противоположные углы параллелограмма равны между собой.

∠А = ∠D, это следует из равенства треугольников CAB и СDВ.

Аналогично и ∠С = ∠В.

2. Противоположные стороны параллелограмма равны между собой.

AB = СD и АС = ВD, так как это стороны равных треугольников и лежат против равных углов.

Теорема 2. Диагонали параллелограмма в точке их пересечения делятся пополам.

Пусть BC и AD - диагонали параллелограмма AВDС (рис. 226). Докажем, что АО = OD и СО = OB.

Для этого сравним какую-нибудь пару противоположно расположенных треугольников, например \(\Delta\)AOB и \(\Delta\)СОD.

В этих треугольниках AB = СD, как противоположные стороны параллелограмма;

∠1 = ∠2, как углы внутренние накрест лежащие при параллельных AB и СD и секущей AD;

∠3 = ∠4 по той же причине, так как AB || СD и СВ - их секущая.

Отсюда следует, что \(\Delta\)AOB = \(\Delta\)СОD. А в равных треугольниках против равных углов лежат равные стороны. Следовательно, АО = OD и СО = OB.

Теорема 3. Сумма углов, прилежащих к одной стороне параллелограмма, равна 180° .

В параллелограмме ABCD проведем диагональ АС и получим два треугольника ABC и ADC.

Треугольники равны, так как ∠1 = ∠4, ∠2 = ∠3 (накрест лежащие углы при параллельных прямых), а сторона АС общая.
Из равенства \(\Delta\)ABC = \(\Delta\)ADC следует, что AB = CD, BC = AD, ∠B = ∠D.

Сумма углов, прилежащих к одной стороне, например углов А и D, равна 180° как односторонних при параллельных прямых.

Параллелограмм - четырехугольник, у которого противоположные стороны попарно параллельны. Площадь параллелограмма равна произведению его основания (a) на высоту (h). Также можно найте его площадь через две стороны и угол и через диагонали.

Свойства параллелограмма

1. Противоположные стороны тождественны.

Первым делом проведем диагональ \(AC \) . Получаются два треугольника: \(ABC \) и \(ADC \) .

Так как \(ABCD \) - параллелограмм, то справедливо следующее:

\(AD || BC \Rightarrow \angle 1 = \angle 2 \) как лежащие накрест.

\(AB || CD \Rightarrow \angle3 = \angle 4 \) как лежащие накрест.

Следовательно, (по второму признаку: и \(AC \) - общая).

И, значит, \(\triangle ABC = \triangle ADC \) , то \(AB = CD \) и \(AD = BC \) .

2. Противоположные углы тождественны.

Согласно доказательству свойства 1 мы знаем, что \(\angle 1 = \angle 2, \angle 3 = \angle 4 \) . Таким образом сумма противоположных углов равна: \(\angle 1 + \angle 3 = \angle 2 + \angle 4 \) . Учитывая, что \(\triangle ABC = \triangle ADC \) получаем \(\angle A = \angle C \) , \(\angle B = \angle D \) .

3. Диагонали разделены пополам точкой пересечения.

По свойству 1 мы знаем, что противоположные стороны тождественны: \(AB = CD \) . Еще раз отметим накрест лежащие равные углы.

Таким образом видно, что \(\triangle AOB = \triangle COD \) по второму признаку равенства треугольников (два угла и сторона между ними). То есть, \(BO = OD \) (напротив углов \(\angle 2 \) и \(\angle 1 \) ) и \(AO = OC \) (напротив углов \(\angle 3 \) и \(\angle 4 \) соответственно).

Признаки параллелограмма

Если лишь один признак в вашей задаче присутствует, то фигура является параллелограммом и можно использовать, все свойства данной фигуры.

Для лучшего запоминания, заметим, что признак параллелограмма будет отвечать на следующий вопрос - «как узнать?» . То есть, как узнать, что заданная фигура это параллелограмм.

1. Параллелограммом является такой четырехугольник, у которого две стороны равны и параллельны.

\(AB = CD \) ; \(AB || CD \Rightarrow ABCD \) - параллелограмм.

Рассмотрим подробнее. Почему \(AD || BC \) ?

\(\triangle ABC = \triangle ADC \) по свойству 1 : \(AB = CD \) , \(\angle 1 = \angle 2 \) как накрест лежащие при параллельных \(AB \) и \(CD \) и секущей \(AC \) .

Но если \(\triangle ABC = \triangle ADC \) , то \(\angle 3 = \angle 4 \) (лежат напротив \(AD || BC \) (\(\angle 3 \) и \(\angle 4 \) - накрест лежащие тоже равны).

Первый признак верен.

2. Параллелограммом является такой четырехугольник, у которого противоположные стороны равны.

\(AB = CD \) , \(AD = BC \Rightarrow ABCD \) - параллелограмм.

Рассмотрим данный признак. Еще раз проведем диагональ \(AC \) .

По свойству 1 \(\triangle ABC = \triangle ACD \) .

Из этого следует, что: \(\angle 1 = \angle 2 \Rightarrow AD || BC \) и \(\angle 3 = \angle 4 \Rightarrow AB || CD \) , то есть \(ABCD \) - параллелограмм.

Второй признак верен.

3. Параллелограммом является такой четырехугольник, у которого противоположные углы равны.

\(\angle A = \angle C \) , \(\angle B = \angle D \Rightarrow ABCD \) - параллелограмм.

\(2 \alpha + 2 \beta = 360^{\circ} \) (поскольку \(\angle A = \angle C \) , \(\angle B = \angle D \) по условию).

Получается, \(\alpha + \beta = 180^{\circ} \) . Но \(\alpha \) и \(\beta \) являются внутренними односторонними при секущей \(AB \) .

Понятие параллелограмма

Определение 1

Параллелограмм -- это четырехугольник, в котором противоположные стороны параллельны между собой (рис. 1).

Рисунок 1.

Параллелограмм имеет два основных свойства. Рассмотрим их без доказательства.

Свойство 1: Противоположные стороны и углы параллелограмма равны, соответственно, между собой.

Свойство 2: Диагонали, проведенные в параллелограмме, делятся пополам их точкой пересечения.

Признаки параллелограмма

Рассмотрим три признака параллелограмма и представим их в виде теорем.

Теорема 1

Если две стороны четырехугольника равны между собой, а также параллельны, то этот четырехугольник будет параллелограммом.

Доказательство.

Пусть нам дан четырехугольник $ABCD$. В котором $AB||CD$ и $AB=CD$ Проведем в нем диагональ $AC$ (рис. 2).

Рисунок 2.

Рассмотрим параллельные прямые $AB$ и $CD$ и их секущую $AC$. Тогда

\[\angle CAB=\angle DCA\]

как накрест лежащие углы.

По $I$ признаку равенства треугольников,

так как $AC$ -- их общая сторона, а $AB=CD$ по условию. Значит

\[\angle DAC=\angle ACB\]

Рассмотрим прямые $AD$ и $CB$ и их секущую $AC$, по последнему равенству накрест лежащих углов получим, что $AD||CB$.}Следовательно, по определению $1$, данный четырехугольник является параллелограммом.

Теорема доказана.

Теорема 2

Если противоположные стороны четырехугольника равны между собой, то он является параллелограммом.

Доказательство.

Пусть нам дан четырехугольник $ABCD$. В котором $AD=BC$ и $AB=CD$. Проведем в нем диагональ $AC$ (рис. 3).

Рисунок 3.

Так как $AD=BC$, $AB=CD$, а $AC$ -- общая сторона, то по $III$ признаку равенства треугольников,

\[\triangle DAC=\triangle ACB\]

\[\angle DAC=\angle ACB\]

Рассмотрим прямые $AD$ и $CB$ и их секущую $AC$, по последнему равенству накрест лежащих углов получим, что $AD||CB$. Следовательно, по определению $1$, данный четырехугольник является параллелограммом.

\[\angle DCA=\angle CAB\]

Рассмотрим прямые $AB$ и $CD$ и их секущую $AC$, по последнему равенству накрест лежащих углов получим, что $AB||CD$. Следовательно, по определению 1, данный четырехугольник является параллелограммом.

Теорема доказана.

Теорема 3

Если диагонали, проведенные в четырехугольнике, своей точкой пересечения делятся на две равные части, то этот четырехугольник является параллелограммом.

Доказательство.

Пусть нам дан четырехугольник $ABCD$. Проведем в нем диагонали $AC$ и $BD$. Пусть они пересекаются в точке $O$ (рис. 4).

Рисунок 4.

Так как, по условию $BO=OD,\ AO=OC$, а углы $\angle COB=\angle DOA$ как вертикальные, то, по $I$ признаку равенства треугольников,

\[\triangle BOC=\triangle AOD\]

\[\angle DBC=\angle BDA\]

Рассмотрим прямые $BC$ и $AD$ и их секущую $BD$, по последнему равенству накрест лежащих углов получим, что $BC||AD$. Также $BC=AD$. Следовательно, по теореме $1$, данный четырехугольник является параллелограммом.

Параллелограмм - это четырехугольник, у которого противоположные стороны попарно параллельны. На следующем рисунке представлен параллелограмм ABCD. У него сторона AB параллельна стороне CD, а сторона BC параллельна стороне AD.

Как вы уже успели догадаться, параллелограмм является выпуклым четырехугольником. Рассмотрим основные свойства параллелограмма.

Свойства параллелограмма

1. В параллелограмме противоположные углы и противоположные стороны равны. Докажем это свойство - рассмотрим параллелограмм, представленный на следующем рисунке.

Диагональ BD разделяет его на два равных треугольника: ABD и CBD. Они равны по стороне BD и двум прилежащим к ней углам, так как углы накрест лежащие при секущей BD параллельных прямых BC и AD и AB и CD соответственно. Следовательно, AB = CD и
BC = AD. А из равенства углов 1, 2 ,3 и 4 следует, что угол A = угол1 +угол3 = угол2 + угол4 = угол С.

2. Диагонали параллелограмма точкой пересечения делятся пополам. Пусть точка О есть точка пересечения диагоналей AC и BD параллелограмма ABCD.

Тогда треугольник AOB и треугольник COD равны между собой, по стороне и двум прилежащим к ней углам. (AB=CD так как это противоположные стороны параллелограмма. А угол1 = угол2 и угол3 = угол4 как накрест лежащие углы при пересечении прямых AB и CD секущими AC и BD соответственно.) Из этого следует, что AO = OC и OB = OD, что и требовалось доказать.

Все основные свойства проиллюстрированы на следующих трех рисунках.