Луи де бройль открытия. Сказка о герцоге де бройле, который открыл самые странные волны в мире. Тонкая структура и магнитные аномалии

Луи де Бройль, один из создателей квантовой механики - всемирно известный ученый, чьи работы в области теоретической физики, а также выдающийся литературный талант глубоко изменили современную физику и поставили его в один ряд с самыми выдающимися учеными нашего времени. Он первым пришел к выводу, что дуализм волна-частица - явление природы, а не ухищрения математиков для преодоления каких-то расходимостей. Его рассчеты волновых свойств частиц были подтверждены экспериментально (дифракция электронов).

Луи де Бройль лауреат нобелевской премии за 1929 года по физике за открытие волновых свойств электрона в 1923 году.

Подробная биография

Де Бройль родился в Дьеппе (Франция) в 1892 г. в одной из самых аристократических семей. Он окончил лицей в Париже и в 1909 г. получил степень бакалавра истории в Парижском университете. Однако, проявив склонность к точным наукам, он отказался от карьеры историка и палеонтолога и в 1913 г. получил в том же Парижском университете степень бакалавра точных наук.

После службы в армии в годы первой мировой войны де Бройль работал в лаборатории, созданной его братом Морисом де Бройлем, где занимался экспериментальным изучением самых высокочастотных излучений, которые только были доступны спектроскопическому исследованию и где проблема выбора между корпускулярной и волновой трактовкой оптических явлений стояла особенно остро. В 1924 г. Луи де Бройль защитил свою докторскую диссертацию на тему "Исследования в области квантовой теории", в которой он попытался перебросить мост между этими противоположными теориями. Де Бройль связал с каждой движущейся частицей волну определенной длины. В случае частиц со значительной массой, с которыми имеет дело классическая механика, почти полностью преобладают корпускулярные свойства. Волновые же свойства являются определяющими у частиц атомных размеров.

Отступив на первых порах от глубокого революционного содержания своей теорий, де Бройль пытался сохранить с помощью различных гипотез традиционную детерминистическую интерпретацию классической физики. Однако, столкнувшись с огромными математическими трудностями, он вынужден был согласиться с вероятностной и индетерминистской интерпретацией, в которой классическая механика становилась просто частным случаем более общей волновой механики.

Экспериментальное подтверждение наличия волновых свойств у частиц было получено четыре года спустя американскими физиками, сотрудниками лаборатории «Белл-телефон», обнаружившими, что атомные частицы, такие, как электроны и протоны, благодаря связанной с ними волне могут, подобно свету и рентгеновским лучам, испытывать дифракцию. Позднее эти идеи получили практическое осуществление при разработке магнитных линз, служащих основой электронного микроскопа.

Лауреат Нобелевской премии в области физики 1929 г. Луи де Бройль в том же году получил от Французской Академии Наук впервые учрежденную медаль Анри Пуанкаре. В 1933 г. он был избран действительным членом Французской Академии Наук, а в 1942, сменив Эмилия Пикара, стал одним из ее постоянных секретарей.

Наконец, с 1926 г. он много занимается вопросами образования и научного руководства. В 1928 г., прочитав несколько лекций и курсов в Сорбонне, Париже и Гамбургском университете, де Бройль получил кафедру теоретической физики в Институте имени Анри Пуанкаре, где организовал центр по изучению современной теоретической физики. В 1943 г., занимаясь решением проблем, возникших из-за недостаточной связи науки с производством, он основал в Институте имени Пуанкаре отдел исследований по прикладной механике. Этот интерес к практическому приложению науки нашел свое отражение в его последних работах, посвященных ускорителям заряженных частиц, волноводам, атомной энергии и кибернетике.

Луи де Бройль совместно со своим братом опубликовал важные научные работы по физике атомных частиц и оптике, примыкающие к его ранним работам, а также, в связи с фундаментальными исследованиями по волновой механике, работы по физике рентгеновских и гамма-лучей.

В своих лекциях и популярных книгах он обсуждает философские стороны проблем, возникающих в этих новых теориях. Самая последняя его работа в этой области - "История развития современной физики от Первого Солвеевского Конгресса физиков 1911 г. до настоящего времени".

За свою литературную работу он был удостоен избрания в 1945 году во Французскую Академию. Он является почетным президентом Французской Ассоциации писателей-ученых и в 1952 г. получил первую премию Калинга за высокое качество научных работ.

Когда в 1945 г. французское правительство образовало Высшую Комиссию по атомной энергии, Луи де Бройль был назначен ее техническим советником, а после реорганизации Комиссии в 1951 г. он стал членом ее Ученого совета.

Умер Луи де Бройль в 1987 году.

  • Де Бройль Л. Избранные научные труды. Том 1. Становление квантовой физики: работы 1921-1934 годов. [Djv- 4.9M ] Автор: Луи де Бройль. Научное издание. Оформление И.В. Кравченко.
    (Москва: Издательская группа «Логос», 2010)
    Скан: AAW, OCR, обработка, формат Djv: accepts, 2015
    • СОДЕРЖАНИЕ:
      Предисловие. Жорж Лошак (7).
      Раздел I. Жорж Лошак. ПРИНЦ В НАУКЕ
      Введение (11).
      Глава 1. История рода. Детство (16).
      Глава 2. Наука - смысл жизни (33).
      Глава 3. Война. Эйфелева башня. Улица лорда Байрона. Первые работы (49).
      Глава 4. Работы 1923 года. Диссертация. Волновая механика (60).
      Глава 5. Первые победы. Первые соперничества. Река удаляется от источника (76).
      Глава 6. Триумф индетерминизма. Переворот на Сольвеевском конгрессе. Де Бройль отступает перед лагерем противников (87).
      Глава 7. Годы славы (103).
      Глава 8. Война, опять война. Де Бройль возвращается к своим первым идеям (120).
      Глава 9. Разворот (137).
      Глава 10. Работать для будущего (151).
      Библиография (174).
      Раздел II. Луи де Бройль. СТАТЬИ 1921-1927 ГОДОВ
      Об уменьшении частоты кванта в последовательных превращениях излучения высокой частоты (181).
      Излучение абсолютно черного тела и кванты света (184).
      Об интерференции и теории квантов света (190).
      Волны и кванты (193).
      Кванты света. Дифракция и интерференция (196).
      Кванты, кинетическая теория газов и принцип Ферма (198).
      О динамике квантов света и интерференции (201).
      О собственной частоте электрона (203).
      Об аналогии между динамикой материальной точки и геометрической оптикой (206).
      Корпускулярная структура вещества и излучения и волновая механика (215).
      ПЯТИМЕРНАЯ ВСЕЛЕННАЯ И ВОЛНОВАЯ МЕХАНИКА (217).
      I. Введение (217).
      II. Точка зрения неволновой механики (218).
      III. Точка зрения волновой механики (224).
      ВОЛНОВАЯ МЕХАНИКА И КОРПУСКУЛЯРНАЯ СТРУКТУРА ВЕЩЕСТВА И ИЗЛУЧЕНИЯ (228).
      I. Введение (228).
      II. Непрерывные волны и динамика материальной точки (229).
      III. Переход от старых механик к новой (242).
      IV. Случай движения системы материальных точек (244).
      Заключение и замечания (248).
      Раздел III. Луи де Бройль. ТРУДЫ ПЕРИОДА СТАНОВЛЕНИЯ КВАНТОВОЙ ФИЗИКИ
      ИССЛЕДОВАНИЯ ПО ТЕОРИИ КВАНТОВ. ДОКТОРСКАЯ ДИССЕРТАЦИЯ (253).
      Резюме (253).
      Исторический обзор (254).
      Глава I. Фазовая волна (259).
      Глава II. Принцип Мопертюи и принцип Ферма (268).
      Глава III. Квантовые условия устойчивости траекторий (280).
      Глава IV. Квантование одновременных движений двух электрических центров (284).
      Глава V. Кванты света (290).
      Глава VI. Рассеяние X- и y-лучей (300).
      Глава VII. Статистическая механика и кванты (308).
      Приложение к главе V (321).
      Выводы и заключения (323).
      МАГНИТНЫЙ ЭЛЕКТРОН: ТЕОРИЯ ДИРАКА (325).
      От редакции (325).
      Предисловие (326).
      Часть первая. Успехи и неудачи квантовой теории и волновой механики в ее первоначальной форме (327).
      Глава I. Атомный спектр водорода. Теории Бора и Зоммерфельда (327).
      Глава II. Общие понятия о дублетных оптических спектрах и их интерпретация (338).
      Глава III. Спектры рентгеновских лучей и теории Бора и Зоммерфельда (344).
      Глава IV. Магнитные аномалии и гипотеза о вращающемся электроне (356).
      Глава V Краткое изложение принципов волновой механики (367).
      Глава VI. Краткое изложение принципов волновой механики (продолжение) (378).
      Глава VII. Релятивистская форма волновой механики с одной волновой функцией (388).
      Глава VIII. Успехи и неудачи волновой механики с одной волновой функцией (395).
      Часть вторая. Теория вращающегося магнитного электрона Дирака. Общие принципы (408).
      Глава IX. Теория Паули (408).
      Глава X. Теория Дирака (417).
      Глава XI. Релятивистская инвариантность уравнений Дирака (426).
      Глава XII. Плотности заряда и тока в теории Дирака. Плоские волны (435).
      Глава XIII. Собственный магнетизм электрона (442).
      Глава XIV Тензор «плотности электрического и магнитного моментов» (451).
      Глава XV Матрицы и первые интегралы в теории Дирака. Собственный угловой момент электрона (460).
      Глава XVI. Систематическое резюме полученных результатов (471).
      Часть третья. Применения теории Дирака. Критические замечания и различные дополнения (486).
      Глава XVII. Объяснение тонкой структуры при помощи теории Дирака (486).
      Глава XVIII. Вывод формулы Ланде (502).
      Глава XIX. Собственный и орбитальный угловые моменты. Поляризация электронных волн (511).
      Глава XX. Состояния с отрицательной энергией в теории Дирака (518).
      Глава XXI. Шредингеровское «дрожание» (527).
      Глава XXII. Несколько замечаний о теории относительности и новой механике (534).
      НОБЕЛЕВСКАЯ ЛЕКЦИЯ, ПРОЧИТАННАЯ В СТОКГОЛЬМЕ 12 ДЕКАБРЯ 1929 Г. ЛУИ ДЕ БРОЙЛЕМ. О ВОЛНОВОЙ ПРИРОДЕ ЭЛЕКТРОНА (541).

Аннотация издательства: Публикуются основополагающие научные труды выдающегося французского ученого, одного из создателей квантовой механики Луи де Бройля Часть работ ученого выходит на русском языке впервые. В этот том вошли биография Луи де Бройля «Принц в науке», написанная его другом и единомышленником Ж. Лошаком, статьи 1921-1927 годов, книга «Магнитный электрон (теория Дирака)», диссертация Луи де Бройля и его Нобелевская лекция, по сей день представляющие большой интерес.
Для ученых-физиков, представителей других естественных и точных наук, философов и науковедов.

(1892 г. – 1987 г.)


Луи Виктор Пьер Раймон де Бройль родился во французском городе Дьепп 15 августа 1892 года. Он был младшим из трех детей герцога Виктора де Бройля и урожденной Полин де ля Форест д’Армайль. Отец будущего ученого происходил из старинного аристократического рода Брольи – так произносилась их фамилия в Пьемонте (область на северо-западе Италии), откуда в середине XVII века переселился во Францию генерал Франсуа-Мари граф де Брольи. На протяжении столетий де Бройли служили Франции на военном и дипломатическом поприще. Среди них были маршалы и военные министры, князья и принцы. Чаще они были в фаворе, но иногда попадали в немилость и даже на гильотину – именно так в 1794 году закончил свою жизнь Клод Виктор принц де Брольи, осужденный революционным трибуналом.

С детства Луи проявлял большой интерес к истории. Спустя много лет он признался одному из своих учеников, что в своей жизни он прочел больше книг по истории, чем по физике. Физик по призванию, он получил блестящее гуманитарное образование. После окончания парижского лицея Жансон-де-Сайи Луи продолжил обучение на факультете искусств и литературы в Сорбонне. Он изучал историю ив 1910 году получил степень бакалавра. Старший брат Луи, Морис де Бройль, был физиком-экспериментатором и, по всей видимости, это сыграло не последнюю роль в том, что Луи отказался от карьеры историка и обратился к изучению точных наук в том же Парижском университете. По словам самого де Бройля, кроме физики он увлекался «философией, обобщениями и книгами Пуанкаре», знаменитого французского математика. В 1913 году Луи получил степень бакалавра на факультете естественных наук.

Сразу же после окончания университета Луи де Бройль был призван на военную службу и зачислен во французский инженерный корпус. Во время Первой мировой войны он был радистом на станции беспроволочного телеграфа при Эйфелевой башне. Когда же война закончилась, Луи возобновил свои занятия физикой в научно-исследовательской лаборатории, созданной его братом Морисом. Предметом его изучения стали высокочастотные излучения.

Что же это было за время в истории физики? В конце XIX века были сделаны такие открытия, как рентгеновское излучение и радиоактивность, был открыт электрон. В 1900 году Макс Планк высказал предположение о том, что электромагнитное излучение состоит из неделимых порций – квантов, вопреки господствовавшему в то время представлению о том, что свет распространяется непрерывными волнами. Были заложены основы квантовой теории. «…Несмотря на всю важность и значительность прогресса, произошедшего в физике за последние века, ученые были не в состоянии глубоко понять истинную природу явлений, пока они ничего не знали о существовании квантов… В тот день, когда кванты вошли в науку, величественное и грандиозное здание классической физики было потрясено до самого основания… В истории науки не много было подземных толчков, сравнимых по силе с этим», – так написал в одной из своих книг Луи де Бройль о значении идей Планка. В 1905 году Альберт Эйнштейн, используя квантовую теорию, предложил объяснение фотоэлектрического эффекта, тем самым расширив область применения этой теории и подтвердив ее справедливость. Оказалось, что свет, обладающий волновыми свойствами, в ряде явлений проявляет себя как поток частиц. В 1913 году Нильс Бор предложил модель атома, которая подтвердила предположение о двойственной природе света.

Живо интересуясь новейшими достижениями физической науки, Луи де Бройль высказал настолько неожиданную идею, что некоторые ученые сочли ее чуть ли не безумной. В 1924 году он представил к защите докторскую диссертацию «Исследования по квантовой теории», в которой выдвинул гипотезу об универсальности корпускулярно-волнового дуализма. Если волны могут вести себя как частицы, то и частицы могут вести себя как волны – предположил де Бройль. Электроны, нейтроны, атомы и молекулы, как и фотоны, обладают и корпускулярными, и волновыми свойствами. Позже в одной из статей французский ученый так писал о своих рассуждениях: «Я старался представить себе корпускулу как очень маленькое нарушение, включенное в волну, а это привело меня к тому, чтобы рассматривать корпускулу как своего рода маленькие часы, фазы которых всегда должны быть согласованы с фазой той волны, с которой они объединены…» Поскольку это было лишь теоретическое измышление, не имевшее экспериментальной основы, члены ученого совета Парижского университета, где проходила защита, отнеслись к работе с большой долей скептицизма. И лишь поддержка Эйнштейна, на которого работа молодого ученого произвела большое впечатление, позволила получить де Бройлю докторскую степень. На статьи де Бройля обратил внимание и Эрвин Шрёдингер. Позже идеи французского физика пригодились ему для создания волновой механики.

Прошло всего четыре года, и волновые свойства материи (так называемые волны де Бройля) получили экспериментальное подтверждение. Американские физики, сотрудники лаборатории «Белл-телефон», обнаружили, что электроны и протоны, подобно свету и рентгеновским лучам, могут благодаря связанной с ними волне испытывать дифракцию. В 1933 году идеи де Бройля нашли практическое применение – Э. Руска создал электронный микроскоп, основой которого были магнитные линзы.

В 1929 году Луи де Бройль был удостоен Нобелевской премии по физике «за открытие волновой природы электронов». На церемонии награждения, представляя лауреата, член Шведской королевской академии наук К. В. Озен заметил: «Блестящая догадка де Бройля разрешила давний спор, установив, что не существует двух миров, один – света и волн, другой – материи и корпускул. Есть только один общий мир». В этом же году Луи де Бройль получил от Французской академии наук медаль Анри Пуанкаре.

В одной из своих работ Луи де Бройль писал: «Я начал заниматься квантами, когда мне было около двадцати лет, и продолжал изучать их в течение четверти века. И все же я должен честно признаться, что если за все это время я и добился несколько более глубокого понимания некоторых сторон этого вопроса, то я не могу еще с полной уверенностью сказать, что таится под маской, скрывающей подлинное лицо квантов…» Кроме научной работы Луи де Бройль активно вел преподавательскую деятельность. В 1928 году он прочел несколько курсов лекций в Сорбонне и Гамбургском университете, в том же году возглавил кафедру теоретической физики в Институте имени Анри Пуанкаре, где он организовал центр по изучению современной теоретической физики.

В 1933 году ученый был избран действительным членом Французской академии наук, а в 1942 году стал одним из ее постоянных секретарей. В следующем году он основал при Институте имени Анри Пуанкаре отдел исследований по прикладной механике. Интерес ученого к вопросам практического приложения науки нашел свое отражение в его работах, посвященных ускорителям заряженных частиц, волноводам, атомной энергии, кибернетике.

В 1936 году вышла в свет книга де Бройля «Революция в физике», которая впоследствии неоднократно переиздавалась в течение долгих лет во многих странах мира. Секрет такого успеха в том, что это одна из немногих книг, где довольно полно и популярно изложена квантовая теория. В предисловии к русскому изданию говорится, что «…это образец лучшего стиля популярной литературы, где автор никогда не впадает в дурной тон снисходительного отношения к читателю, которое выражается в том, что очень примитивно при помощи объяснений «на пальцах» и вульгарных «картинок» предположительно «малоразвитому» читателю пытаются объяснить некие высокие и недоступные материи. Напротив, это серьезная беседа о серьезных и трудных вещах…» И далее «Популярной книгу делает главным образом то, что при изложении совершенно не употребляется математический аппарат, и от читателя не требуется никаких специальных знаний. От него требуется только общая культура и добрая воля, которая стимулируется непосредственным интересом к предмету». Действительно, Луи де Бройлю было присуще умение ясно и достаточно просто изложить сложные вопросы, наметить рациональную связь идей. Его литературный талант не остался незамеченным – в 1945 году он был удостоен избрания во Французскую академию, был почетным президентом Французской ассоциации писателей-ученых, в 1952 году получил первую премию Калинга за высокое качество научных работ.

В 1945 году Луи де Бройль был назначен техническим советником созданной французским правительством Высшей комиссии по атомной энергии.

Заслуги французского ученого были признаны во всем мире. Он получил почетные степени многих университетов, был членом Лондонского королевского общества, американской Национальной академии наук, Американской академии наук и искусств.

Личная жизнь Луи де Бройля, революционера в физике, была небогата событиями. Он жил в одном и том же городе, Париже, работал в одном и том же учебном заведении, занимался одним и тем же делом – теоретической физикой. Де Бройль никогда не был женат. Его увлечениями было чтение, игра в шахматы, пешие прогулки. В 1960 году после смерти старшего брата Луи унаследовал герцогский титул. Скончался знаменитый ученый в парижской больнице 19 марта 1987 года в возрасте 94 лет.

Выросший в утонченной и привилегированной среде французской аристократии, Б. еще до поступления в лицей Жансон-де-Сайи в Париже был увлечен различными науками. Особый интерес в нем вызывала история, изучением которой Б. занялся на факультете искусств и литературы Парижского университета, где он в 1910 г. получил степень бакалавра. Не без влияния старшего брата Мориса Б. все больше увлекался физикой и, по его собственным словам, «философией, обобщениями и книгами [Анри] Пуанкаре», знаменитого французского математика. После периода интенсивных занятий он в 1913 г. получил ученую степень по физике на факультете естественных наук Парижского университета.

В тот же год Б. был призван на военную службу и зачислен во французский инженерный корпус. После начала в 1914 г. первой мировой войны он служил в радиотелеграфном дивизионе и провел большую часть военных лет на станции беспроволочного телеграфа при Эйфелевой башне. Через год после окончания войны Б. возобновил свои занятия физикой в частной научно-исследовательской лаборатории своего брата. Он изучал поведение электронов, атомов и рентгеновских лучей.

Это было увлекательное время для физиков, когда загадки возникали буквально на каждом шагу. В XIX в. классическая физика достигла столь больших успехов, что некоторые ученые начали сомневаться, остались ли нерешенными хотя бы какие-то принципиальные научные проблемы. И лишь в самые последние годы столетия были сделаны такие поразительные открытия, как рентгеновское излучение, радиоактивность и электрон. В 1900 г. Макс Планк предложил свою революционную квантовую теорию для объяснения соотношения между температурой тела и испускаемым им излучением. Вопреки освященному веками представлению о том, что свет распространяется непрерывными волнами, Планк высказал предположение о том, что электромагнитное излучение (всего лишь за несколько десятилетий до этого было доказано, что свет представляет собой электромагнитное излучение) состоит из неделимых порций, энергия которых пропорциональна частоте излучения. Новая теория позволила Планку разрешить проблему, над которой он работал, но она оказалась слишком непривычной, чтобы стать общепринятой. В 1905 г. Альберт Эйнштейн показал, что теория Планка – не математический трюк. Используя квантовую теорию, он предложил замечательное объяснение фотоэлектрического эффекта (испускание электронов поверхностью металла под действием падающего на нее излучения). Было известно, что с увеличением интенсивности излучения число испущенных с поверхности электронов возрастает, но их скорость никогда не превосходит некоторого максимума. Согласно предложенному Эйнштейном объяснению, каждый квант передает свою энергию одному электрону, вырывая его с поверхности металла: чем интенсивнее излучение, тем больше фотонов, которые высвобождают больше электронов; энергия же каждого фотона определяется его частотой и задает предел скорости вылета электрона. Заслуга Эйнштейна не только в том, что он расширил область применения квантовой теории, но и в подтверждении им ее справедливости. Свет, несомненно обладающий волновыми свойствами, в ряде явлений проявляет себя как частицы.

Новое подтверждение квантовой теории последовало в 1913 г., когда Нильс Бор предложил модель атома, которая соединила концепцию Эрнста Резерфорда о плотном центральном ядре, вокруг которого обращаются электроны, с определенными ограничениями на электронные орбиты. Эти ограничения позволили Бору объяснить линейчатые спектры атомов, которые можно наблюдать, если свет, испущенный веществом, находящимся в возбужденном состоянии при горении или электрическом разряде, пропустить через узкую щель, а затем через спектроскоп – оптический прибор, пространственно разделяющий компоненты сигнала, соответствующие различным частотам или длинам волн (различным цветам). В результате возникает серия линий (изображений щели), или спектр. Положение каждой спектральной линии зависит от частоты определенной компоненты. Спектр целиком определяется излучением атомов или молекул светящегося вещества. Бор объяснял возникновение спектральных линий «перескоком» электронов в атомах с одной «разрешенной» орбиты на другую, с более низкой энергией. Разность энергий между орбитами, теряемая электроном при переходе, испускается в виде кванта, или фотона – излучения с частотой, пропорциональной разности энергий. Спектр представляет собой своего рода кодированную запись энергетических состояний электронов. Модель Бора, таким образом, подкрепила и концепцию дуальной природы света как волны и потока частиц.

Несмотря на большое число экспериментальных подтверждений, мысль о двойственном характере электромагнитного излучения у многих физиков продолжала вызывать сомнения. К тому же в новой теории обнаружились уязвимые места. Например, модель Бора «разрешенные» электронные орбиты ставила в соответствии наблюдаемым спектральным линиям. Орбиты не следовали из теории, а подгонялись, исходя из экспериментальных данных.

Б. первым понял, что если волны могут вести себя как частицы, то и частицы могут вести себя как волны. Он применил теорию Эйнштейна – Бора о дуализме волна-частица к материальным объектам. Волна и материя считались совершенно различными. Материя обладает массой покоя. Она может покоиться или двигаться с какой-либо скоростью. Свет же не имеет массы покоя: он либо движется с определенной скоростью (которая может изменяться в зависимости от среды), либо не существует. По аналогии с соотношением между длиной волны света и энергией фотона Б. высказал гипотезу о существовании соотношения между длиной волны и импульсом частицы (массы, умноженной на скорость частицы). Импульс непосредственно связан с кинетической энергией. Таким образом, быстрый электрон соответствует волне с более высокой частотой (более короткой длиной волны), чем медленный электрон. В каком обличье (волны или частицы) проявляет себя материальный объект зависит от условий наблюдения.

С необычайной смелостью Б. применил свою идею к модели атома Бора. Отрицательный электрон притягивается к положительно заряженному ядру. Для того чтобы обращаться вокруг ядра на определенном расстоянии, электрон должен двигаться с определенной скоростью. Если скорость электрона изменяется, то изменяется и положение орбиты. В таком случае центробежная сила уравновешивается центростремительной. Скорость электрона на определенной орбите, находящейся на определенном расстоянии от ядра, соответствует определенному импульсу (скорости, умноженной на массу электрона) и, следовательно, по гипотезе Б., определенной длине волны электрона. По утверждению Б., «разрешенные» орбиты отличаются тем, что на них укладывается целое число длин волн электрона. Только на таких орбитах волны электронов находятся в фазе (в определенной точке частотного цикла) с самими собой и не разрушаются собственной интерференцией.

В 1924 г. Б. представил свою работу «Исследования по квантовой теории» («Researches on the Quantum Theory») в качестве докторской диссертации факультету естественных наук Парижского университета. Его оппоненты и члены ученого совета были поражены, но настроены весьма скептически. Они рассматривали идеи Б. как теоретические измышления, лишенные экспериментальной основы. Однако по настоянию Эйнштейна докторская степень Б. все же была присуждена. В следующем году Б. опубликовал свою работу в виде обширной статьи, которая была встречена с почтительным вниманием. С 1926 г. он стал лектором по физике Парижского университета, а через два года был назначен профессором теоретической физики Института Анри Пуанкаре при том же университете.

Лучшие дня

На Эйнштейна работа Б. произвела большое впечатление, и он советовал многим физикам тщательно изучить ее. Эрвин Шредингер последовал совету Эйнштейна и положил идеи Б. в основу волновой механики, обобщившей квантовую теорию. В 1927 г. волновое поведение материи получило экспериментальное подтверждение в исследованиях Клинтона Дж. Дэвиссона и Лестера Х. Джермера, работавших с низкоэнергетическими электронами в Соединенных Штатах, и Джорджа П. Томсона, использовавшего электроны большой энергии в Англии. Открытие связанных с электронами волн, которые можно отклонять в нужную сторону и фокусировать, привело в 1933 г. к созданию Эрнстом Руской электронного микроскопа. Волны, связанные с материальными частицами, теперь принято называть волнами де Бройля.

В 1929 г. «за открытие волновой природы электронов» Б. был удостоен Нобелевской премии по физике. Представляя лауреата на церемонии награждения, член Шведской королевской академии наук К.В. Озеен заметил: «Исходя из предположения о том, что свет есть одновременно и волновое движение, и поток корпускул [частиц], Б. открыл совершенно новый аспект природы материи, о котором ранее никто не подозревал... Блестящая догадка Б. разрешила давний спор, установив, что не существует двух миров, один – света и волн, другой – материи и корпускул. Есть только один общий мир».

Б. продолжил свои исследования природы электронов и фотонов. Вместе с Эйнштейном и Шредингером он в течение многих лет пытался найти такую формулировку квантовой механики, которая подчинялась бы обычным причинно-следственным законам. Однако усилия этих выдающихся ученых не увенчались успехом, а экспериментально было доказано, что такие теории неверны. В квантовой механике возобладала статистическая интерпретация, основанная на работах Нильса Бора, Макса Борна и Вернера Гейзенберга. Эту концепцию часто называют копенгагенской интерпретацией в честь Бора, который разрабатывал ее в Копенгагене.

В 1933 г. Б. был избран членом Французской академии наук, а в 1942 г. стал ее постоянным секретарем. В следующем году он основал Центр исследований по прикладной математике при Институте Анри Пуанкаре для укрепления связей между физикой и прикладной математикой. В 1945 г., после окончания второй мировой войны, Б. и его брат Морис были назначены советниками при французской Высшей комиссии по атомной энергии.

Б. никогда не состоял в браке. Он любил совершать пешие прогулки, читать, предаваться размышлениям и играть в шахматы. После смерти своего брата в 1960 г. он унаследовал герцогский титул. Б. скончался в парижской больнице 19 марта 1987 г. в возрасте 94 лет.

Помимо Нобелевской премии, Б. был награжден первой медалью Анри Пуанкаре Французской академии наук (1929), Гран-при Альберта I Монакского (1932), первой премией Калинги ЮНЕСКО (1952) и Гран-при Общества инженеров Франции (1953). Он был обладателем почетных степеней многих университетов и членом многих научных организаций, в том числе Лондонского королевского общества, американской Национальной академии наук и Американской академии наук и искусств. В 1945 г. он был выдвинут в состав Французской академии братом Морисом в знак признания его литературных достижений.

«Результат эксперимента никогда
не имеет характера простого факта.
В изложении этого факта всегда
содержится некоторая доля истолкования,
следовательно, к факту всегда примешаны
теоретические представления»

Луи де Бройль, Тропам науки

Французский герцог (по происхождению), физик, один из основоположников квантовой механики.

Лауреат Нобелевской премии 1929 года по физике за гипотезу волновой природы электрона, после её экспериментально подтверждения в 1927 году в экспериментах по дифракции электронов в кристаллах.

«Могу привести ещё пример, о котором мне рассказал известный физик Дебай . Дебай в то время был преподавателем, профессором в Цюрихе. У него был ученик, тоже преподаватель, Шредингер , тогда ещё мало известный молодой учёный. Дебай познакомился с работой де Бройля , в которой де Бройль, выдвинувший, как Вы знаете, гипотезу о существовании волновой структуры электрона, показал, что при известных условиях интерференции можно заменить движение электрона волновым движением. Идея эквивалентности волнового движения и квантовых процессов, волнового движения и корпускулярного движения была воспринята целым рядом физиков весьма отрицательно. Отрицательно отнесся к ней и . Когда Дебай попросил его рассказать молодёжи о работе де Бройля, Шрёдингер сначала отказался. Потом, когда Дебай, пользуясь своим положением профессора, снова предложил ему это сделать, Шрёдингер согласился, и он начал искать, как можно было бы объяснить идеи де Бройля в наиболее полной и точной математической форме. И когда он рассказал о работах де Бройля в том представлении, какое он считал наиболее точным. Дебай ему сказал: «Послушайте, ведь Вы же нашли новый замечательный вид уравнения, который является фундаментальным в современной физике».

Капица П.Л. , Эксперимент. Теория. Практика, М., «Наука», 1987 г., с. 256.

«Основная мысль Мейерсона очень хорошо выражена де Бройлем в предисловии к посмертному изданию Essais французского философа: Е. Meyerson. Essais. Paris, Vrin, 1936, Preface, p. VI-IX. Де Бройль говорит, что рациональное постижение мира становится возможным потому, что мы находим объекты, настолько близкие, что становится возможным ввести общие понятия - по выражению Мейерсона, «волокна (fibres) реальности». Они позволяют науке существовать, несмотря на недостижимость её идеала. Де Бройль приводит фразу Поля Валери , навеянную, по его мнению, работами Мейерсона: «Человеческий дух безумен, потому что он ищет, он велик, потому что находит». «Но поскольку, - продолжает де Бройль, - Вселенная не может в конце концов свестись к пустой тавтологии, мы должны включить в описание природы «иррациональные» элементы, которые сопротивляются нашим попыткам отождествления...».

Кузнецов Б.Г., Разум и бытие. Этюды о классическом рационализме и неклассической науке, М., «Наука», 1972 г., с. 163.

«Люди, которые сами не занимаются наукой, довольно часто полагают, что науки всегда дают абсолютно достоверные положения; эти люди считают, что научные работники делают свои выводы на основе неоспоримых фактов и безупречных рассуждений и, следовательно, уверенно шагают вперед, причём исключена возможность ошибки или возврата назад. Однако состояние современной науки, так же как и история наук в прошлом, доказывает, что дело обстоит совершенно не так…».

Луи де Бройль, Тропами науки, М., «Издательство иностранной литературы», 1962 г., с. 292-293.

«Де Бройль не давал своим ученикам тем диссертаций, поскольку считал, что если молодой исследователь не может найти для себя тему, он не в состоянии написать диссертацию. Это не означает, что после выбора темы он не помогал своим ученикам…».

Жорж Лошак , Наука и тень, Москва-Ижевск, «Регулярная и хаотическая динамика», 2009 г., с. 209.

«У Луи де Бройля был свой семинар (хотелось бы позволить себе в шутку написать своя «семинария» из-за истовости, которая там царствовала). Юные и не столь юные теоретики излагали там свои соображения. Прерывать и задавать вопросы до конца изложения было не принято. После выступлений были краткие и безжизненные прения.

Я вынужден со скорбью признать, что ученики, которые собирались вокруг де Бройля, не отличались высоким интеллектуальным уровнем, а некоторые из них даже и порядочностью. Одним из признаков того была атмосфера восхищения, чтобы не сказать низкопоклонства, которой они окружали его. Например, не принято было говорить о «квантовой механике», а только о «волновой механике», ибо именно последняя была связана с дебройлевскими волнами.

Было также общепринято, что волновая механика - это очень отвлечённая и трудная область науки, предназначенная для избранных, а не (как это было в то время в других странах) просто рабочий инструмент в руках физика. Возможно, что сам де Бройль и не поощрял такого поведения, но (может быть, по мягкости характера) он никогда не реагировал достаточно твёрдо, чтобы положить этому конец раз и навсегда. […]

История де Бройля поднимает непростой вопрос о гении, который делает великое, даже величайшее открытие, но только одно и после этого должен жить с этим всю свою, иногда долгую жизнь (для де Бройля это 60 лет). Эта проблема замечательно отражена в юмористическом рисунке, который я видел много лет тому назад. Первобытный человек сидит на камне в позе «Мыслителя» , погружённый в глубокое раздумье. Рядом стоят двое его сородичей, и один шепчет другому: «Ладно, пусть он и открыл огонь, но что он сделал с тех пор?»

Де Бройль открыл огонь и был первым. Наверное, это открытие сделали бы другие, если бы он этого не сделал, но сделал это он. Ну, а что потом? Ни жизнь, ни квантовая механика не остановились, медленно, но победно двигаются вперед соперники: , Йордан, Крамерс ...

Но вторая великая мысль к гению так и не приходит и не придёт, и физика, которому это невыносимо, сосредоточенного на отчаянной и бесплодной погоне за ней, мало-помалу окружают льстецы, бездарности, чудаки и шарлатаны.

В результате проваливается в подвал французская теоретическая физика...».

Абрагам А.И., Время вспять, или физик, где ты был, М., «Наука», 1991 г., с. 64-65.