Почему бензин на лужах образует радужные пятна? Исследовательская работа. Что, как и почему – разберусь и объясню. Мыльный пузырь

Цель урока:

  • обобщить знания по теме “Интерференция и дифракция света”;
  • продолжить формирование экспериментальных умений и навыков учащихся;
  • применить теоретические знания для объяснения явлений природы;
  • способствовать формированию интереса к физике и процессу научного познания;
  • способствовать расширению кругозора учащихся, развитию умения делать выводы по результатам эксперимента.

Оборудование:

  • лампа с прямой нитью накала (одна на класс);
  • кольцо проволочное с ручкой (работы №1,2);
  • стакан с мыльным раствором (работы №1,2);
  • пластинки стеклянные (40 х 60мм) по 2 штуки на один комплект (работа№3) (самодельное оборудование);
  • штангенциркуль (работа №4);
  • ткань капроновая (100 х 100мм, самодельное оборудование, работа №5);
  • грампластинки (4 и 8 штрихов на 1мм, работа №6);
  • компакт-диски (работа №6);
  • фотографии насекомых и птиц (работа №7).

Ход занятия

I. Актуализация знаний по теме “Интерференция света”(повторение изученного материала).

Учитель: Перед выполнением экспериментальных заданий повторим основной материал.

Какое явление называют явлением интерференции?

Для каких волн характерно явление интерференции?

Дайте определение когерентных волн.

Запишите условия интерференционных максимумов и минимумов.

Соблюдается ли закон сохранения энергии в явлениях интерференции?

Ученики (предполагаемые ответы):

– Интерференция – явление характерное для волн любой природы: механических, электромагнитных. “Интерференция волн – сложение в пространстве двух (или нескольких) волн, при котором в разных его точках получается усиление или ослабление результирующей волны”.

– Для образования устойчивой интерференционной картины необходимы когерентные (согласованные) источники волн.

– Когерентными называются волны, имеющие одинаковую частоту и постоянную разность фаз.

– На доске ученики записывают условия максимумов и минимумов.

Амплитуда результирующего смещения в точке С зависит от разности хода волн на расстоянии d 2 – d 1 .

рисунок1 – условия максимумов рисунок2 – условия минимумов
, ()

где k=0; ± 1; ± 2; ± 3;…

(разность хода волн равна четному числу полуволн)

Волны от источников S 1 и S 2 придут в точку С в одинаковых фазах и “усилят друг друга”.

Фазы колебаний

Разность фаз

А=2Х max – амплитуда результирующей волны.

, ()

где k=0; ± 1; ± 2; ± 3;…

(разность хода волн равна нечетному числу полуволн)

Волны от источников S 1 и S 2 придут в точку С в противофазах и “погасят друг друга”.

Фазы колебаний

Разность фаз

А=0 – амплитуда результирующей волны.

Интерференционная картина – регулярное чередование областей повышенной и пониженной интенсивности света.

– Интерференция света – пространственное перераспределение энергии светового излучения при наложении двух или нескольких световых волн.

Следовательно, в явлениях интерференции и дифракции света соблюдается закон сохранения энергии. В области интерференции световая энергия только перераспределяется, не превращаясь в другие виды энергии. Возрастание энергии в некоторых точках интерференционной картины относительно суммарной световой энергии компенсируется уменьшением её в других точках (суммарная световая энергия – это световая энергия двух световых пучков от независимых источников).

Светлые полоски соответствуют максимумам энергии, темные – минимумам.

Учитель: Переходим к практической части урока.

Экспериментальная работа №1

“Наблюдение явления интерференции света на мыльной пленке”.

Оборудование: стаканы с раствором мыла, кольца проволочные с ручкой диаметром 30 мм. (см. рисунок 3 )

Учащиеся наблюдают интерференцию в затемненном классе на плоской мыльной пленке при монохроматическом освещении.

На проволочном кольце получаем мыльную плёнку и располагаем её вертикально.

Наблюдаем светлые и тёмные горизонтальные полосы, изменяющиеся по ширине по мере изменения толщины плёнки (см. рисунок 4 ).

Объяснение. Появление светлых и темных полос объясняется интерференцией световых волн, отраженных от поверхности пленки. треугольник d = 2h

Разность хода световых волн равна удвоенной толщине плёнки.

При вертикальном расположении пленка имеет клинообразную форму. Разность хода световых волн в верхней её части будет меньше, чем в нижней. В тех местах пленки, где разность хода равна четному числу полуволн, наблюдаются светлые полосы. А при нечетном числе полуволн – светлые полосы. Горизонтальное расположение полос объясняется горизонтальным расположением линий равной толщины пленки .

4. Освещаем мыльную пленку белым светом (от лампы).

5. Наблюдаем окрашенность светлых полос в спектральные цвета: вверху – синий, внизу – красный.

Объяснение. Такое окрашивание объясняется зависимостью положения светлых полос о длины волн падающего цвета.

6.Наблюдаем также, что полосы, расширяясь и сохраняя свою форму, перемещаются вниз.

Объяснение. Это объясняется уменьшением толщины пленки, так как мыльный раствор стекает вниз под действием силы тяжести.

Экспериментальная работа №2

“Наблюдение интерференции света на мыльном пузыре”.

1. Учащиеся выдувают мыльные пузыри (См. рисунок 5).

2. Наблюдаем на верхней и нижней его части образование интерференционных колец, окрашенных в спектральные цвета. Верхний край каждого светлого кольца имеет синий цвет, нижний – красный. По мере уменьшения толщины пленки кольца, также расширяясь, медленно перемещаются вниз. Их кольцеобразную форму объясняют кольцеобразной формой линий равной толщины .

Экспериментальная работа № 3.

“Наблюдение интерференции света на воздушной пленке”

Чистые стеклянные пластинки учащиеся складывают вместе и сжимают пальцами (см. рисунок №6).

Пластинки рассматривают в отраженном свете на темном фоне.

Наблюдаем в некоторых местах яркие радужные кольцеобразные или замкнутые неправильной формы полосы.

Измените нажим и пронаблюдайте изменение расположения и формы полос.

Учитель: Наблюдения в этой работе носят индивидуальный характер. Зарисуйте наблюдаемую вами интерференционную картину.

Объяснение: Поверхности пластинок не могут быть совершенно ровными, поэтому соприкасаются они только в нескольких местах. Вокруг этих мест образуются тончайшие воздушные клинья различной формы, дающие картину интерференции. (рисунок№ 7).

В проходящем свете условие максимума 2h=kl

Учитель: Явление интерференции и поляризации в строительной и машиностроительной технике используют для изучения напряжений, возникающих в отдельных узлах сооружений и машин. Метод исследования называют фотоупругим. Например, при деформации модели детали однородность органического стекла нарушается .Характер интерференционной картины отражает внутренние напряжения в детали (рисунок№ 8).

II. Актуализация знаний по теме “Дифракция света” (повторение изученного материала).

Учитель: Перед выполнением второй части работы повторим основной материал.

Какое явление называют явлением дифракции?

Условие проявления дифракции.

Дифракционная решетка, ее виды и основные свойства.

Условие наблюдения дифракционного максимума.

Почему фиолетовый цвет ближе к центру интерференционной картины?

Ученики (предполагаемые ответы):

Дифракция – явление отклонения волны от прямолинейного распространения при прохождении через малые отверстия и огибании волной малых препятствий.

Условие проявления дифракции: d < , где d – размер препятствия, - длина волны. Размеры препятствий (отверстий) должны быть меньше или соизмеримы с длиной волны. Существование этого явления (дифракции) ограничивает область применения законов геометрической оптики и является причиной предела разрешающей способности оптических приборов.

Дифракционная решетка – оптический прибор, представляющий собой периодическую структуру из большого числа регулярно расположенных элементов, на которых происходит дифракция света . Штрихи с определенным и постоянным для данной дифракционной решетки профилем повторяются через одинаковый промежуток d (период решетки). Способность дифракционной решетки раскладывать падающий на нее пучек света по длинам волн является ее основным свойством. Различают отражательные и прозрачные дифракционные решетки. В современных приборах применяют в основном отражательные дифракционные решетки .

Условие наблюдения дифракционного максимума:

Экспериментальная работа № 4.

“Наблюдение дифракции света на узкой щели”

Оборудование: (см рисунок№ 9 )

  1. Сдвигаем ползунок штангенциркуля до образования между губками щели шириной 0,5 мм.
  2. Приставляем скошенную часть губок вплотную к глазу (располагая шель вертикально).
  3. Сквозь эту щель смотрим на вертикально расположенную нить горящей лампы.
  4. Наблюдаютем по обе стороны от нити параллельные ей радужные полоски.
  5. Изменяем ширину щели в пределах 0,05 – 0,8 мм. При переходе к более узким щелям полосы раздвигаются, становятся шире и образуют различимые спектры. При наблюдении через самую широкую щель полосы очень узки и располагаются близко одна к другой.
  6. Ученики зарисовывают в тетрадь увиденную картину.

Экспериментальная работа № 5.

“Наблюдение дифракции света на капроновой ткани”.

Оборудование: лампа с прямой нитью накала, ткань капроновая размером 100x100мм (рисунок 10)

  1. Смотрим через капроновую ткань на нить горящей лампы.
  2. Наблюдаем “дифракционный крест” (картина в виде двух скрещенных под прямым углом дифракционных полос) .
  3. Ученики зарисовывают в тетрадь увиденную картину (дифракционный крест).

Объяснение: В центре краста виден дифракционный максимум белого цвета. При k=0 разность хода волн равна нулю, поэтому центральный максимум получается белого цвета.

Крест получается потому, что нити ткани представляют собой две сложенные вместе дифракционные решетки со взаимно перпендикулярными щелями. Появление спектральных цветов объясняется тем, что белый свет состоит из волн различной длины. Дифракционный максимум света для различных волн получается в различных местах.

Экспериментальная работа № 6.

“Наблюдение дифракции света на грампластинке и лазерном диске”.

Оборудование: лампа с прямой нитью накала, грампластинка (см. рисунок 11)

Грампластинка является хорошей дифракционной решеткой.

  1. Располагаем грампластинку так, чтобы бороздки расположились параллельно нити лампы и наблюдаем дифракцию в отраженном свете.
  2. Наблюдаем яркие дифракционные спектры нескольких порядков.

Объяснение: Яркость дифракционных спектров зависит от частоты нанесенных на грампластинку бороздок и от величины угла падения лучей. (см. рисунок 12)

Почти параллельные лучи, падающие от нити лампы, отражаются от соседних выпуклостей между бороздками в точках А и В. Лучи, отраженные под углом равным углу падения, образуют изображение нити лампы в виде белой линии. Лучи, отраженные под иными углами имеют некоторую разность хода, вследствие чего происходит сложение волн.

Аналогичным образом пронаблюдаем дифракцию на лазерном диске. (см. рисунок 13)

Поверхность компакт-диска представляет собой спиральную дорожку с шагом соизмеримым с длиной волны видимого света.На мелкоструктурной поверхности проявляются дифракционные и интерференционные явления. Блики компакт- дисков имеют радужную окраску.

Экспериментальная работа № 7.

“Наблюдение дифракционной окраски насекомых по фотографиям”.

Оборудование: (см рисунки № 14, 15, 16.)

Учитель: Дифракционная окраска птиц, бабочек и жуков весьма распространена в природе. Большое разнообразие в оттенках дифракционных цветов свойственно павлинам, фазанам, черным аистам, колибри, бабочкам. Дифракционную окраску животных изучали не только биологи но и физики .

Учащиеся рассматривают фотографии.

Объяснение: Внешняя поверхность оперения у многих птиц и верхний покров тела бабочек и жуков характеризуются регулярным повторением элементов структуры с преиодом от одного до нескольких микрон, образующих дифракционную решетку . Например, структуру центральных глазков хвостового оперения павлина можно увидеть на рисунке № 14. Цвет глазков меняется в зависимаости от того, как падает на них свет, под каким углом мы на них смотрим.

Контрольные вопросы (каждый ученик получает карточку с заданием – ответить письменно на вопросы):

  1. Что такое свет?
  2. Кем было доказано, что свет – это электромагнитная волна?
  3. Какова скорость света в вакууме?
  4. Кто открыл интерференцию света?
  5. Чем объясняется радужная окраска тонких интерференционных пленок?
  6. Могут ли интерферировать световые волны идущие от двух электрических ламп накаливания? Почему?
  7. Почему толстый слой нефти не имеет радужной окраски?
  8. Зависит ли положение главных дифракционных максимумов от числа щелей решетки?
  9. Почему видимая радужная окраска мыльной пленки все время меняется?

Домашнее задание (по группам, с учетом индивидуальных особенностей учащихся).

– Подготовить сообщение по теме “Парадокс Вавилова”.

– Составить кроссворды с ключевыми словами “интерференция”, “дифракция”.

Литература:

  1. Арабаджи В.И. Дифракционная окраска насекомых / “Квант” №2 1975г.
  2. Волков В.А. Универсальные поурочные разработки по физике. 11 класс. – М.: ВАКО, 2006г.
  3. Козлов С.А. О некоторых оптических свойствах компакт-дисков. / “Физика в школе” №1 2006г.
  4. Компакт-диски / “Физика в школе” №1 2006г.
  5. Мякишев Г.Я., Буховцев Б.Б. Физика: Учеб. для 11 кл. сред. шк. – М.: Просвещение, 2000 г.
  6. Фабрикант В.А. Парадокс Вавилова / “Квант” №2 1971г.
  7. Физика: Учеб. для 11 кл. сред. шк. / Н.М.Шахмаев, С.Н.Шахмаев, Д.Ш.Шодиев. – М.: Просвещение, 1991г.
  8. Физический энциклопедический словарь / “Советская энциклопедия”, 1983г.
  9. Фронтальные лабораторные занятия по физике в 7 – 11 классах общеобразовательных учреждений: Кн. для учителя/В.А.Буров, Ю.И.Дик, Б.С.Зворыкин и др.; Под ред. В.А.Бурова, Г.Г.Никифорова. – М.: Просвещение: Учеб. лит., 1996г.

Я. Гегузин

Отрывок из книги: Гегузин Я. Е. Пузыри. - Долгопрудный: ИД «Интеллект», 2014.

Наука и жизнь // Иллюстрации

Схема, поясняющая появление чёрных пятен в расцветке тонкой плёнки.

Всякий раз, когда вспоминают о мыльных пузырях, неизменно заходит разговор об их цвете или, точнее, об их цветах, или, ещё точнее, - об их расцветке. Вот и С. Я. Маршак в своих стихах восторгается расцветкой пузыря:

Горит, как хвост павлиний,
Каких цветов в нём нет!
Лиловый, красный, синий,
Зелёный, жёлтый цвет.
И чуть дальше:
Огнями на просторе
Играет лёгкий шар.
То в нём синеет море,
То в нём горит пожар.

К восторгам Маршака, пожалуй, каждый из нас может добавить и собственные, разве что высказанные не стихами, а прозой.

В чём причина появления расцветки мыльных пузырей?

Вначале очень коротко об истории проблемы. Физика XVIII века передала XIX веку по наследству противоречивые представления о природе света. К Ньютону восходили представления о «корпускулярном» свете - потоке гипотетических частиц - корпускул. Ньютон считал, что, попадая на сетчатку глаза, частицы возбуждают ощущение света: маленькие корпускулы создают впечатление фиолетового цвета, а корпускулы побольше - красного. Эти представления, объясняя некоторые закономерности распространения света, оставляли без всякого объяснения множество явлений, среди которых оказалась и интерференция света.

К Гримальди, Гуку и Гюйгенсу восходили представления о волновой природе света. Итальянский физик Франческо Гримальди, младший современник Ньютона, сравнивал распространение света с распространением волн на воде.

Мы вспомнили о рубеже между XVIII и XIX веками именно потому, что в это время жил один из величайших физиков - Томас Юнг, который своими исследованиями обосновал волновые представления о свете, объяснив, в частности, всевозможные проявления интерференции. Да и сам термин «интерференция» ввёл в науку впервые именно Юнг.

Это был человек беспримерно многогранного дарования и необозримого круга творческих интересов. Но, пожалуй, наиболее значимые его достижения связаны с развитием представлений о волновой природе света и, в частности, о природе явления интерференции, о цветах тонких плёнок. Французский физик Доменик Араго написал о Томасе Юнге: «Ценнейшее открытие доктора Юнга, которому суждено навеки обессмертить его имя, было ему внушено предметом, казалось бы, весьма ничтожным: теми самыми яркими и лёгкими пузырями мыльной пены, которые, едва вырвавшись из трубочки школьника, становятся игрушкой самых незаметных движений воздуха».

Отдав дань стихам, восторгам и истории, обратимся к физике, поговорим об «оптике мыльного пузыря». Читателю известно, что распространение света - процесс волновой и что распространяющаяся монохроматическая волна имеет определённую длину волны λ0. Известно также, что световой луч отражается от поверхности раздела двух сред, а проходя сквозь эту границу, он преломляется. А ещё известно, что так называемый белый цвет - смесь разноцветных монохроматических лучей - от красного до фиолетового. Длина волны красного луча больше, чем фиолетового. И, наконец, известно, что при переходе из пустоты в вещество плёнки длина волны λ0 изменяется, становится равной λв. Величина n = λ0/λв называется показателем преломления.

Теперь направим под некоторым углом i на поверхность тонкой плёнки толщиной h монохроматический свет, длина волны которого λ0. Произойдёт вот что: луч света частично отразится от поверхности плёнки, а частично, преломившись под углом r, войдёт в её объём. На нижней поверхности плёнки произойдёт то же самое: преломление и отражение. Отражённый луч вернётся к верхней поверхности, отразится и преломится, и какая-то доля его выйдет из плёнки, где встретится с одним из лучей падающего первичного пучка. Произойдёт это в точке С. Точка эта в основном нас и интересует.

В точке С встречаются два луча, рождённые одним источником, но прошедшие разные пути. О таких лучах говорят «когерентные». Их отличительная особенность состоит в том, что разность фаз их колебаний остаётся неизменной. Характер взаимодействия этих лучей в точке С определяется разностью путей, пройденных ими до прихода в эту точку. Эта разность путей называется оптической разностью хода ∆. Из очень несложного расчёта и определения n = sin i/ sin r следует, что

∆ = 2hn cos r.

Мы подошли к самому существенному достижению Томаса Юнга. Он обратил внимание на то, что при выполнении условия ∆ = kλ0/2 (k - целое число) могут иметь место два существенно различных эффекта: если k - чётное число, волны усилят друг друга, а если нечётное - ослабят, точнее говоря, погасят друг друга.

Поражает мощь основной идеи механизма интерференции по Юнгу, которая очень естественно объясняет удивительный экспериментальный факт: свет, слагаясь со светом, порождает тьму! Иному читателю может показаться, что в полученном результате что-то неблагополучно, так как появление тьмы означает исчезновение энергии, а уж этого заведомо не должно происходить. На самом деле не означает, так как энергия в процессе интерференции не исчезает, она перераспределяется, накапливаясь там, где два луча усиливают друг друга.

Основываясь на формуле, определяющей ∆, мы можем очень многое понять в том, что назвали «оптикой мыльного пузыря». В формуле при данном значении n воедино связаны длина волны света λ0, толщина плёнки h и угол r, а следовательно, и угол падения пучка на плёнку i. Предположим, что на поверхность пузыря, образованного плёнкой постоянной толщины, падает пучок белого света, и различные участки поверхности пузыря пучок встречает под различными углами. Это означает, что в условия, при которых отражённый луч усиливается, будут попадать лучи с различной длиной волны и различные участки пузыря будут отсвечивать различными цветами радуги: лиловый, красный, синий, зелёный, жёлтый цвет. Это может произойти и по другой причине: различные участки плёнки пузыря со временем меняют свою толщину (теперь уже меняется h), и именно поэтому «то в нём синеет море, то в нём горит пожар». Если приглядеться к мыльному пузырю, можно отчётливо увидеть потоки жидкости, меняющие его окраску.

Следуя за несметным количеством предшественников, и мы можем поставить опыт по интерференции в мыльных плёнках в условиях, близких к тем, в которых находятся разные участки плёнки мыльного пузыря. Дело в том, что в мыльном пузыре всегда есть участки, в которых под влиянием силы тяжести жидкость движется вниз и, следовательно, толщина плёнки меняется, а с ней меняется и её окраска.

Опыт такой. Плоская плёнка на каркасе располагается вертикально. Со временем она приобретает форму клина: вверху тоньше, внизу толще. Её окраска - полосчатая, разноцветная, меняющаяся со временем. Она как бы плывёт вместе с потоками жидкости.

Чтобы закончить рассказ об оптике мыльного пузыря, обязательно надо сказать о чёрных полосах и пятнах в окраске пузыря. Они особенно отчётливо видны, когда пузырю осталось жить всего несколько мгновений.

Попытаемся понять физическую причину появления чёрных пятен, вспомнив о том, что, обсуждая оптическую разность хода лучей в тонкой плёнке ∆, мы умолчали об одной детали во взаимодействии света с плёнкой. Эта деталь не очень существенна, когда плёнка толстая (h ≥ λ0), и не допускает пренебрежения собой, когда плёнка тонкая (h << λ0). Дело в том, что, как оказывается, отражение луча от границ воздух-плёнка и плёнка-воздух происходит так, что оптическая разность хода при этом скачком изменяется на половину длины волны. В соответствующем разделе теоретической оптики это обстоятельство доказывается математически строго. Известны, однако, совсем простые рассуждения английского физика Джорджа Стокса, отчётливо объясняющие это явление. Приведём его рассуждения. Если направление распространения луча, отражённого от границы воздух-плёнка (BD), и луча, преломлённого в ней (ВС), обратить, они должны образовать луч (ВА), равный по интенсивности и направленный противоположно первичному лучу (АВ). Это утверждение справедливо, оно попросту отражает закон сохранения энергии. Обращённые лучи СВ и DB, вообще говоря, могли бы образовать ещё луч (BE). Он, однако, отсутствует, это - экспериментальный факт. Следовательно, в его создание лучи СВ и DB вносят вклад в виде лучей, которые равны по интенсивности, но смещены по отношению друг к другу на половину длины волны и поэтому гасят друг друга. Если к сказанному добавить, что один из этих лучей испытывал отражение от границы воздух-плёнка, а другой - от границы плёнка-воздух, то станет ясно, что происходит дополнительный скачок ∆ = λ0/2 при отражении от границ между воздухом и плёнкой.

Возвратимся теперь к чёрным пятнам и полосам. Если толщина плёнки настолько мала, что оптическая разность хода, вычисленная без учёта потери полуволны при отражении от границы воздух-плёнка, оказывается малой по сравнению с длиной волны, то интерференция будет определяться только тем, что лучи смещены на половину длины волны, то есть они будут гасить друг друга. А это и означает, что возникает чёрная окраска плёнки.

Всю логику рассказа о чёрных пятнах на мыльном пузыре можно обратить и утверждать следующее. Чёрная окраска очень тонких плёнок - это факт! А следовательно, при отражении двух лучей от границ воздух-плёнка и плёнка-воздух между ними должна возникать дополнительная оптическая разность хода, равная половине длины волны. Это путь не от логики к эксперименту, а от эксперимента к логике. Оба пути законны и дополняют друг друга.

Мы познакомились с идеями, которые в наши дни выглядят почти само собой разумеющимися, а в начале XIX века, во времена Томаса Юнга, были поразительным откровением. Ведь подумать только: свет, слагаясь со светом, порождает тьму!

Информация о книгах Издательского дома «Интеллект» - на сайте www.id-intellect.ru

Цель урока: Выяснить смысл понятия, дать его определение, рассмотреть энергетические эффекты, частичные соотношения, условия разности хода. Познакомить учащихся со способами получения системы когерентных волн. Разъяснить условия наблюдения интерференции света.






Свет представляет собой поток волн. Следовательно должно наблюдаться явление интерференции света, т.е. получение чередований максимумов и минимумов освещенности. Однако получить интерференционную картину с помощью двух независимых источников света невозможно. Выясним, почему? Для получения устойчивой интерференционной картины нужны согласованные волны. Они должны иметь одинаковые длины и постоянную разность фаз в любой точке пространства, т.е. быть когерентными.


Интерференцией световых волн называется сложение двух когерентных волн, вследствие которого наблюдается усиление или ослабление результирующих световых колебаний в различных точках пространства. Когерентные волны – волны, имеющие одинаковую частоту и постоянную во времени разность фаз. В Вы много раз наблюдали интерференционную картину, когда развлекались пусканием мыльных пузырей.




Английский ученный Томас Юнг первым пришел к гениальной мысли о возможности объяснения цветов тонких пленок сложением волн, одна из которых отражается от наружной поверхности пленки, а другая – от внутренней. При этом происходит интерференция световых волн. Результат интерференции зависит от угла падения света на пленку, её толщины и длины волны. Усиление света произойдет, если преломленная волна отстанет от отраженной волны на целое число длин волн. Если же вторая волна отстанет от первой на половину длины волны или нечетное число полуволн, то произойдет ослабление света. Английский ученный Томас Юнг первым пришел к гениальной мысли о возможности объяснения цветов тонких пленок сложением волн, одна из которых отражается от наружной поверхности пленки, а другая – от внутренней. При этом происходит интерференция световых волн. Результат интерференции зависит от угла падения света на пленку, её толщины и длины волны. Усиление света произойдет, если преломленная волна отстанет от отраженной волны на целое число длин волн. Если же вторая волна отстанет от первой на половину длины волны или нечетное число полуволн, то произойдет ослабление света.


Условие максимума: если разность хода двух волн, возбуждающих колебания в этой точке, равна целому числу длин волн Δd = k λ, k =0,1,2,3,… - волны усилят друг друга, Δd – разность хода лучей Условие минимума: если разность хода двух волн, возбуждающих колебания в этой точке, равна нечётному числу полуволн Δd =(2k+1) λ/2, k =0,1,2,3,… -волны погасят друг друга.


Почему же одни мыльные пузыри имеют радужную окраску, а другие – нет? Сначала плёнка бесцветная, так как имеет приблизительно равную толщину. Затем раствор постепенно стекает вниз. Из-за разной толщины нижней утолщённой и верхней утончённой плёнки появляется радужная окраска. Сначала плёнка бесцветная, так как имеет приблизительно равную толщину. Затем раствор постепенно стекает вниз. Из-за разной толщины нижней утолщённой и верхней утончённой плёнки появляется радужная окраска. Сомненье, вера, пыл живых страстей. Игра воздушных мыльных пузырей: Тот радугой блеснул, а этот - серый И разлетятся все Вот жизнь людей.


Толщина плёнки мыльного пузыря Чтобы разрез стенки мыльного пузыря усматривался в виде тонкой линии необходимо увеличение в раз, при таком же увеличении волос будет иметь толщину свыше 2 м. Чтобы разрез стенки мыльного пузыря усматривался в виде тонкой линии необходимо увеличение в раз, при таком же увеличении волос будет иметь толщину свыше 2 м. Вверху – игольное ушко, человеческий волос, бацилла и паутинная нить, увеличенные в 200 раз. Внизу – бациллы и толщина мыльной пленки, увеличенные в раз. 1 μ=0,0001 см.








Волны, отраженные от наружной и внутренней поверхностей пленки – когерентны. Они являются частями одного и того же светового пучка. Цуг волн от каждого излучающего атома разделяется пленкой на два, а затем эти части сводятся вместе и интерферируют. Различие в цвете связано с различием в длине волн. Световым пучкам различного цвета соответствуют волны различной длины. Для взаимного усиления волн, отличающихся друг от друга длиной, требуется различная толщина пленки. Т.к. мыльный пузырь имеет пленку неодинаковой толщины. То при освещении её белым светом появляются различные цвета. К такому выводу первым пришел Томас Юнг. Явление интерференции не только доказывает наличие у света волновых свойств, но и позволяет измерить длину световой волны. Явление интерференции света находит разнообразное практическое применение. Используя это явление можно измерять показатели преломления газов и других веществ, осуществлять точные измерения линейных размеров, контролировать качество шлифования и полирования поверхностей.


Задачи, решаемые на уроке 1. Чем объясняется радужная окраска тонких нефтяных пленок? 2. Почему толстый слой нефти не имеет радужной окраски? 3. Можно ли наблюдать интерференцию света от двух поверхностей оконного окна? 4. Объясните появление радужной окраски поверхности мыльного пузыря. 5. В некоторую точку пространства приходят когерентные лучи с оптической разностью хода 2мкм. Определите, усилится или ослабнет свет в этой точке, если в нее приходят фиолетовые лучи с длиной волны 400 нм.(Ответ: усилятся)


Два когерентных источника света посылают на экран свет длиной волны 550 нм, дающий на экране интерференционную картину. Источники удалены один от другого на 2,2 мм, а от экрана на 2,2 м. Определить, что будет наблюдаться на экране в точке О – гашение или усиление света. (Найти разность хода лучей). Решение: Для ответа на вопрос задачи необходимо знать разность хода лучей. В данном случае оптическая разность хода лучей равна их геометрической разности (лучи распространяются в одной среде – воздухе): =S 2 D=S 2 O-S 1 O=L Из треугольника S 1 OS 2 определим S 2 O: S 2 O= L 2 + d 2 = L 1+(d/L) 2. Учитывая, что d/L величина малая по сравнению с L, можно воспользоваться формулой приближенного вычисления (1±а 2 =1±1/2а 2):S 2 O = L(1+1/2(d/L) 2), тогда =L(1+ 1/2d 2 /L 2 – 1) = d 2 /2L; =(2,2*10 -3 м) 2 /2*2,2 м =1,1 *10 -6 м. В точке О будет максимальное усиление, если разность хода будет соответствовать целому числу волн, т.е. k = 1,2,3,…. k = /λ =2 Ответ. В точке О произойдет усиление света (будет светлая полоса). Закрепление В заключении урока покажем опыт по интерференции звуковых волн. На демонстрационном столе помещаем звуковой генератор, к которому подключаем два одинаковых динамика, служащих источниками звука. На расстоянии порядка 1 м ставим микрофон и электронный осциллограф. Микрофон вначале располагаем на одинаковом расстоянии от динамиков. Включив звук, наблюдаем на экране осциллографа сигнал значительной амплитуды. Перемещая микрофон вдоль линии, параллельной динамикам, наблюдаем ослабление, а затем вновь возрастание амплитуды сигнала, что свидетельствует о переходе микрофона через интерференционный минимум и последующий максимум.

Лабораторная работа № 13

Тема: «Наблюдение интерференции и дифракции света»

Цель работы: экспериментально изучить явление интерференции и дифракции.

Оборудование: электрическая лампа с прямой нитью накала (одна на класс), две стеклянные пластинки, стеклянная трубка, стакан с раствором мыла, кольцо проволочное с ручкой диаметром 30 мм., компакт-диск, штангенциркуль, капроновая ткань.

Теория:

Интерференция – явление характерное для волн любой природы: механических, электромагнитных.

Интерференция волн сложение в пространстве двух (или нескольких) волн, при котором в разных его точках получается усиление или ослабление результирующей волны .

Обычно интерференция наблюдается при наложении волн, испущенных одним и тем же источником света, пришедших в данную точку разными путями. От двух независимых источников невозможно получить интерференционную картину, т.к. молекулы или атомы излучают свет отдельными цугами волн, независимо друг от друга. Атомы испускают обрывки световых волн (цуги), в которых фазы колебаний случайные. Цуги имеют длину около 1метра. Цуги волн разных атомов налагаются друг на друга. Амплитуда результирующих колебаний хаотически меняется со временем так быстро, что глаз не успевает эту смену картин почувствовать. Поэтому человек видит пространство равномерно освещенным. Для образования устойчивой интерференционной картины необходимы когерентные (согласованные) источники волн.

Когерентными называются волны, имеющие одинаковую частоту и постоянную разность фаз.

Амплитуда результирующего смещения в точке С зависит от разности хода волн на расстоянии d2 – d1.

Условие максимума

, (Δd=d 2 -d 1 )

где k=0; ± 1; ± 2; ± 3 ;…

(разность хода волн равна четному числу полуволн)

Волны от источников А и Б придут в точку С в одинаковых фазах и “усилят друг друга”.

φ А =φ Б - фазы колебаний

Δφ=0 - разность фаз

А=2Х max

Условие минимума

, (Δd=d 2 -d 1 )

где k=0; ± 1; ± 2; ± 3;…

(разность хода волн равна нечетному числу полуволн)

Волны от источников А и Б придут в точку С в противофазах и “погасят друг друга”.

φ А ≠φ Б - фазы колебаний

Δφ=π - разность фаз

А=0 – амплитуда результирующей волны.

Интерференционная картина – регулярное чередование областей повышенной и пониженной интенсивности света.

Интерференция света – пространственное перераспределение энергии светового излучения при наложении двух или нескольких световых волн.

Вследствие дифракции свет отклоняется от прямолинейного распространения (например, близи краев препятствий).

Дифракция явление отклонения волны от прямолинейного распространения при прохождении через малые отверстия и огибании волной малых препятствий .

Условие проявления дифракции : d < λ , где d – размер препятствия, λ - длина волны. Размеры препятствий (отверстий) должны быть меньше или соизмеримы с длиной волны.

Существование этого явления (дифракции) ограничивает область применения законов геометрической оптики и является причиной предела разрешающей способности оптических приборов.

Дифракционная решетка – оптический прибор, представляющий собой периодическую структуру из большого числа регулярно расположенных элементов, на которых происходит дифракция света. Штрихи с определенным и постоянным для данной дифракционной решетки профилем повторяются через одинаковый промежуток d (период решетки). Способность дифракционной решетки раскладывать падающий на нее пучек света по длинам волн является ее основным свойством. Различают отражательные и прозрачные дифракционные решетки. В современных приборах применяют в основном отражательные дифракционные решетки .

Условие наблюдения дифракционного максимума :

d·sinφ=k·λ, где k=0; ± 1; ± 2; ± 3; d - период решетки, φ - угол, под которым наблюдается максимуи, а λ - длина волны.

Из условия максимума следует sinφ=(k·λ)/d .

Пусть k=1, тогда sinφ кр =λ кр /d и sinφ ф =λ ф /d.

Известно, что λ кр >λ ф, следовательно sinφ кр >sinφ ф . Т.к. y= sinφ ф - функция возрастающая, то φ кр >φ ф

Поэтому фиолетовый цвет в дифракционном спектре располагается ближе к центру.

В явлениях интерференции и дифракции света соблюдается закон сохранения энергии . В области интерференции световая энергия только перераспределяется, не превращаясь в другие виды энергии. Возрастание энергии в некоторых точках интерференционной картины относительно суммарной световой энергии компенсируется уменьшением её в других точках (суммарная световая энергия – это световая энергия двух световых пучков от независимых источников). Светлые полоски соответствуют максимумам энергии, темные – минимумам.

Ход работы:

Опыт 1. Опустите проволочное кольцо в мыльный раствор. На проволочном кольце получается мыльная плёнка.


Расположите её вертикально. Наблюдаем светлые и тёмные горизонтальные полосы, изменяющиеся по ширине по мере изменения толщины плёнки

Объяснение. Появление светлых и темных полос объясняется интерференцией световых волн, отраженных от поверхности пленки. треугольник d = 2h. Разность хода световых волн равна удвоенной толщине плёнки. При вертикальном расположении пленка имеет клинообразную форму. Разность хода световых волн в верхней её части будет меньше, чем в нижней. В тех местах пленки, где разность хода равна четному числу полуволн, наблюдаются светлые полосы. А при нечетном числе полуволн – темные полосы. Горизонтальное расположение полос объясняется горизонтальным расположением линий равной толщины пленки.

Освещаем мыльную пленку белым светом (от лампы). Наблюдаем окрашенность светлых полос в спектральные цвета: вверху – синий, внизу – красный.

Объяснение. Такое окрашивание объясняется зависимостью положения светлых полос о длины волн падающего цвета.

Наблюдаем также, что полосы, расширяясь и сохраняя свою форму, перемещаются вниз.

Объяснение. Это объясняется уменьшением толщины пленки, так как мыльный раствор стекает вниз под действием силы тяжести.

Опыт 2. С помощью стеклянной трубки выдуйте мыльный пузырь и внимательно рассмотрите его. При освещении его белым светом наблюдайте образование цветных интерференционных колец, окрашенных в спектральные цвета. Верхний край каждого светлого кольца имеет синий цвет, нижний – красный. По мере уменьшения толщины пленки кольца, также расширяясь, медленно перемещаются вниз. Их кольцеобразную форму объясняют кольцеобразной формой линий равной толщины.

Ответьте на вопросы:

  1. Почему мыльные пузыри имеют радужную окраску?
  2. Какую форму имеют радужные полосы?
  3. Почему окраска пузыря все время меняется?

Опыт 3. Тщательно протрите две стеклянные пластинки, сложите вместе и сожмите пальцами. Из-за неидеальности формы соприкасающихся поверхностей между пластинками образуются тончайшие воздушные пустоты.

При отражении света от поверхностей пластин, образующих зазор, возникают яркие радужные полосы – кольцеобразные или неправильной формы. При изменении силы, сжимающей пластинки, изменяются расположение и форма полос. Зарисуйте увиденные вами картинки.


Объяснение: Поверхности пластинок не могут быть совершенно ровными, поэтому соприкасаются они только в нескольких местах. Вокруг этих мест образуются тончайшие воздушные клинья различной формы, дающие картину интерференции. В проходящем свете условие максимума 2h=kl

Ответьте на вопросы:

  1. Почему в местах соприкосновения пластин наблюдаются яркие радужные кольцеобразные или неправильной формы полосы?
  2. Почему с изменением нажима изменяются форма и расположение интерференционных полос?

Опыт 4. Рассмотрите внимательно под разными углами поверхность компакт-диска (на которую производится запись).


Объяснение : Яркость дифракционных спектров зависит от частоты нанесенных на диск бороздок и от величины угла падения лучей. Почти параллельные лучи, падающие от нити лампы, отражаются от соседних выпуклостей между бороздками в точках А и В. Лучи, отраженные под углом равным углу падения, образуют изображение нити лампы в виде белой линии. Лучи, отраженные под иными углами имеют некоторую разность хода, вследствие чего происходит сложение волн.

Что вы наблюдаете? Объясните наблюдаемые явления. Опишите интерференционную картину.

Поверхность компакт-диска представляет собой спиральную дорожку с шагом соизмеримым с длиной волны видимого света. На мелкоструктурной поверхности проявляются дифракционные и интерференционные явления. Блики компакт- дисков имеют радужную окраску.

Опыт 5. Сдвигаем ползунок штангенциркуля до образования между губками щели шириной 0,5 мм.

Приставляем скошенную часть губок вплотную к глазу (располагая щель вертикально). Сквозь эту щель смотрим на вертикально расположенную нить горящей лампы. Наблюдаем по обе стороны от нити параллельные ей радужные полоски. Изменяем ширину щели в пределах 0,05 – 0,8 мм. При переходе к более узким щелям полосы раздвигаются, становятся шире и образуют различимые спектры. При наблюдении через самую широкую щель полосы очень узки и располагаются близко одна к другой. Зарисуйте в тетрадь увиденную картину. Объясните наблюдаемые явления .

Опыт 6. Посмотрите сквозь капроновую ткань на нить горящей лампы. Поворачивая ткань вокруг оси, добейтесь четкой дифракционной картины в виде двух скрещенных под прямым углом дифракционных полос.

Объяснение : В центре краста виден дифракционный максимум белого цвета. При k=0 разность хода волн равна нулю, поэтому центральный максимум получается белого цвета. Крест получается потому, что нити ткани представляют собой две сложенные вместе дифракционные решетки со взаимно перпендикулярными щелями. Появление спектральных цветов объясняется тем, что белый свет состоит из волн различной длины. Дифракционный максимум света для различных волн получается в различных местах.

Зарисуйте наблюдаемый дифракционный крест. Объясните наблюдаемые явления.

Запишите вывод. Укажите, в каких из проделанных вами опытов наблюдалось явление интерференции, а в каких дифракции .

Контрольные вопросы:

  1. Что такое свет?
  2. Кем было доказано, что свет – это электромагнитная волна?
  3. Что называют интерференцией света? Каковы условия максимума и минимума при интерференции?
  4. Могут ли интерферировать световые волны идущие от двух электрических ламп накаливания? Почему?
  5. Что называют дифракцией света?
  6. Зависит ли положение главных дифракционных максимумов от числа щелей решетки?

Тема: Оптика

Урок: Практическая работа по теме «Наблюдение интерференции и дифракции света»

Название: «Наблюдение интерференции и дифракции света».

Цель: экспериментально изучить интерференцию и дифракцию света.

Оборудование: лампа с прямой нитью накала, 2 стеклянные пластины, проволочная рамка, мыльный раствор, штангенциркуль, плотная бумага, кусок батиста, капроновая нить, зажим.

Опыт 1

Наблюдение картины интерференции с помощью стеклянных пластин.

Берем две стеклянные пластины, перед этим тщательно их протираем, затем плотно складываем и сжимаем. Ту интерференционную картину, которую увидим в пластинах, нужно зарисовать.

Чтобы увидеть изменение картины от степени сжатия стекол, необходимо взять устройство зажима и с помощью винтов сжать пластины. В результате этого картина интерференции изменяется.

Опыт 2

Интрференция на тонких пленках.

Чтобы пронаблюдать данный опыт, возьмем мыльную воду и проволочную рамку, затем посмотрим, как образуется тонкая пленка. Если рамку опустить в мыльную воду, то после поднятия в ней видна образовавшаяся мыльная пленка. Наблюдая в отраженном свете за этой пленкой, можно увидеть полосы интерференции.

Опыт 3

Интерференция на мыльных пузырях.

Для наблюдения воспользуемся мыльным раствором. Выдуваем мыльные пузыри. То, как пузыри переливаются, это и есть интерференция света (см. Рис. 1).

Рис. 1. Интерференция света в пузырях

Картина, которую мы наблюдаем, может выглядеть следующим образом (см. Рис. 2).

Рис. 2. Интерференционная картина

Это интерференция в белом свете, когда мы положили линзу на стекло и осветили ее простым белым светом.

Если воспользоваться светофильтрами и освещать монохроматическим светом, то картина интерференции меняется (меняется чередование темных и светлых полос) (см. Рис. 3).

Рис. 3. Использование светофильтров

Теперь перейдем к наблюдению дифракции.

Дифракция - это волновое явление, присущее всем волнам, которое наблюдается на краевых частях каких-либо предметов.

Опыт 4

Дифракция света на малой узкой щели.

Создадим щель между губками штангенциркуля, с помощью винтов передвигая его части. Для того чтобы пронаблюдать дифракцию света, зажмем между губками штангенциркуля лист бумаги, таким образом, чтобы потом этот лист бумаги можно было вытащить. После этого перпендикулярно подносим эту узкую щель вплотную к глазу. Наблюдая через щель яркий источник света (лампу накаливания), можно увидеть дифракцию света (см. Рис. 4).

Рис. 4. Дифракция света на тонкой щели

Опыт 5

Дифракция на плотной бумаге

Если взять плотный лист бумаги и сделать бритвой надрез, то, поднеся этот разрез бумаги вплотную к глазу и меняя расположение соседних двух листочков, можно наблюдать дифракцию света.

Опыт 6

Дифракция на малом отверстии

Чтобы пронаблюдать такую дифракцию, нам потребуется плотный лист бумаги и булавка. С помощью булавки делаем в листе маленькое отверстие. Затем подносим отверстие вплотную к глазу и наблюдаем яркий источник света. В этом случае видна дифракция света (см. Рис. 5).

Изменение дифракционной картины зависит от величины отверстия.

Рис. 5. Дифракция света на малом отверстии

Опыт 7

Дифракция света на кусочке плотной прозрачной ткани (капрон, батист).

Возьмем батистовую ленту и, расположив ее на небольшом расстоянии от глаз, посмотрим сквозь ленту на яркий источник света. Мы увидим дифракцию, т.е. разноцветные полосы и яркий крест, который будет состоять из линий дифракционного спектра.

На рисунке представлены фотографии дифракции, которую мы наблюдаем (см. Рис. 6).

Рис. 6. Дифракция света

Отчет: в нем должны быть представлены рисунки интерференции и дифракции, которые наблюдались в ходе работы.

Изменение линий характеризует, как происходит та или иная процедура преломления и сложения (вычитания) волн.

На основании дифракционной картины, полученной от щели, создан специальный прибор - дифракционная решетка . Она представляет собой набор щелей, через которые проходит свет. Этот прибор нужен для того, чтобы проводить детальные исследования света. Например, с помощью дифракционной решетки можно определить длину световой волны.

  1. Физика ().
  2. Первое сентября. Учебно-методическая газета ().