Магниты и магнитные свойства вещества. Магнитные свойства веществ. Классификация веществ по магнитным свойствам Магнетические свойства

Магнитные свойства вещества

2. Диа- и парамагнетики.

1. Магнитное поле вещества. Гипотеза Ампера.

Опыты показывают, что все вещества, помещённые в магнитное поле, намагничиваются и сами становятся источниками дополнительного магнитного поля.

Магнетики – вещества, способные намагничиваться в магнитном поле.

Для объяснения намагничивания тел Ампер предположил (гипотеза Ампера ), что в молекулах вещества циркулируют круговые токи. Эти токи возникают при движении электронов по орбитам вокруг ядер атомов и создают собственное магнитное поле. Внешнее магнитное поле оказывает на них ориентирующее действие.

Действие внешнего магнитного поля на элементарный ток определяется магнитным моментом тока :

, , (1)

где – сила элементарного тока, – площадь, обтекаемая током, а – вектор нормали к ней. Вектор перпендикулярен к плоскости элементарного тока.

В отсутствие внешнего магнитного поля элементарные токи, а, следовательно, и их магнитные моменты, расположены беспорядочно. Такое вещество не создаёт дополнительное магнитное поле:

Если вещество поместить во внешнее магнитное поле , то магнитные моменты молекул приобретают преимущественную ориентацию в одном направлении. Вещество приобретает некоторый суммарный магнитный момент (намагничивается) и создаёт в пространстве дополнительное магнитное поле .

Внешнее и дополнительное поля в сумме дают результирующее поле:

В качестве характеристики степени намагничивания магнетика применяется вектор намагничивания.

Вектором намагничивания , данного вещества называют магнитный момент единицы объема:

где – магнитный момент отдельной молекулы, а суммирование ведётся по всем молекулам в объёме V .

Единица измерения вектора намагничивания:

,

что совпадает с единицей напряжённости магнитного поля .

Опыт показывает, что вектор намагничивания в изотропных средах пропорционален вектору напряжённости магнитного поля:

где безразмерная величина называется магнитной восприимчивостью вещества .

Индукция и напряжённость внешнего магнитного поля связаны равенством: . Расчёты показывают, что напряжённость дополнительного магнитного поля равна вектору намагничивания : . Следовательно, для индукции дополнительного магнитного поля имеем:

Тогда формула (2) примет вид:

Используя (4), получим:

Безразмерная величина

представляет собой магнитную проницаемость вещества . Подставив (6) в (5), придём к соотношению

которое ранее нами постулировалось.

Формула (6) связывает две характеристики магнетиков: магнитную проницаемость и магнитную восприимчивость.

2. Диа- и парамагнетики.

Все вещества по характеру намагничивания делятся на три класса – диамагнетики , парамагнетики и ферромагнетики .

Диамагнетики – вещества с отрицательной восприимчивостью и соответственно с магнитной проницаемостью .

К ним относятся : водород, вода, стекло, цинк, серебро, золото, медь, висмут.

Так как у диамагнетиков , то из формулы (4) следует, что дополнительное магнитное поле по направлению противоположно внешнему и результирующее магнитное поле незначительно ослабляется .

При внесении диамагнетика в магнитное поле, он выталкивается из области наибольшей напряжённости и устанавливается перпендикулярно силовым линиям.

Атомы диамагнетиков при отсутствии внешнего магнитного поля собственным магнитным моментом не обладают. Под действием внешнего магнитного поля атомы приобретают индуцированный (наведённый) магнитный момент, противоположный полю.

Парамагнетики – вещества с положительной восприимчивостью и магнитной проницаемостью .

К ним относятся : азот, кислород, воздух, эбонит, алюминий, вольфрам, платина.

В парамагнетиках дополнительное магнитное поле совпадает по направлению с внешним, так как , и результирующее магнитное поле незначительно увеличивается .

При внесении парамагнетика в магнитное поле, он втягивается в область большей напряжённости и устанавливается вдоль силовых линий.

Атомы парамагнетиков обладают собственным магнитным моментом при отсутствии внешнего поля, причём эти моменты ориентированы совершенно беспорядочно. При наличии внешнего поля возникает некоторое упорядоченное расположение магнитных моментов вдоль поля.

Абсолютное значение магнитной восприимчивости для диа- и парамагнетиков очень мало (), поэтому для них магнитная проницаемость незначительно отличается от единицы. Диа- и парамагнетики называют слабомагнитными веществами .

3. Ферромагнетики. Гистерезис.

Ферромагнетики – сильномагнитные вещества, у которых магнитная проницаемость значительно больше 1 и достигает значений порядка (.

К ним относятся : железо, кобальт, никель, некоторые редкоземельные металлы, большое количество сплавов.

Зависимость магнитной проницаемости от напряжённости внешнего магнитного поля .

Зависимость вектора намагничивания от напряжённости внешнего магнитного поля .

Зависимость индукции магнитного поля от напряжённости внешнего магнитного поля .

Важнейшей особенностью ферромагнетиков является наличие у них свойства гистерезиса (отставания).

Явление гистерезиса состоит в несовпадении кривых намагничивания и размагничивания ферромагнетика.

При уменьшении индукции внешнего магнитного поля до нуля намагничивание не исчезает, оно характеризуется остаточной индукцией B ос .

Коэрцитивная (задерживающая) сила – величина индукции противоположного поля (отрезок ОС ), необходимая для ликвидации остаточного намагничивания.

Ферромагнетик с большой коэрцитивной силой называется жёстким , а с малой коэрцитивной силой – мягким .

Магнитострикция – деформация ферромагнетиков при намагничивании.

Все ферромагнетики при нагревании теряют свои особые магнитные свойства и становятся парамагнетиками.

Температура Кюри – температура перехода из ферромагнитного состояния в парамагнитное.

Температура Кюри: 770 º С (железо);

1150 º С (кобальт);

360 º С (никель).

В ферромагнетиках ниже температуры Кюри имеются целые намагниченные области – домены , размеры которых достигают . Внешнее магнитное поле, действующее на ферромагнетики, ориентирует магнитные моменты доменов.

Когда векторы магнитных моментов всех доменов устанавливаются параллельно внешнему магнитному полю, наступает магнитное насыщение .

Контрольные вопросы

1. Какие вещества называют магнетиками?

2. Сформулируйте гипотезу Ампера.

3. Дайте определения магнитной проницаемости и магнитной восприимчивости вещества. Запишите соотношение между этими величинами.

4. Что такое диамагнетики? парамагнетики? В чем различие их магнитных свойств?

5. Какие вещества называют ферромагнетиками?

6. Объясните петлю гистерезиса ферромагнетика. Что такое магнитострикция?

7. Какую температуру для ферромагнетика называют температурой Кюри?

8. Каков механизм намагничения ферромагнетиков?

Магнитные свойства вещества

Во всех телах, помещенных в магнитное поле, возникает магнитный момент. Это явление называется намагничиванием .

Намагниченное тело (магнетик) создает дополнительное магнитное поле с индукцией B ′, которая взаимодействует с индукцией B 0 = μ а H , обусловленной макроскопическими токами. Оба поля дают результирующее поле с индукцией B , которая получается в результате векторного сложения B ′ и B 0 .

В молекулах вещества циркулируют замкнутые токи; каждый такой ток имеет магнитный момент; в отсутствие внешнего магнитною поля молекулярные токи ориентированы хаотически и среднее поле, создаваемое ими, будет равно нулю. Под действием магнитного поля магнитные моменты молекул ориентируются преимущественно вдоль поля, вследствие чего вещество намагничивается. Мерой намагничивания вещества (магнетика) является вектор намагничивания. Вектор намагничивании I равен векторной сумме всех магнитных моментов p m молекул, заключенных в единице объема вещества:

Величина χ называется магнитной восприимчивостью – величина безразмерная.

В системе СИ: В системе СГСМ:
B ′ = μ I B ′ = 4χ I 2)
B = μ 0 H + μ I B = H + 4χ I 3)
μ = 1 + χ μ = 1 + 4π χ 4)

Кривая, выражающая зависимость между H и B или H и I , называется кривой намагничивания .

Вещества, для которых χ > 0 (но незначительно), называются парамагнитными (парамагнетиками ); вещества, для которых χ < 0, называются диамагнитными (диамагнетиками ). Вещества, у которых χ намного больше единицы, называются ферромагнетиками .

Ферромагнетики отличаются от парамагнетиков и диамагнетиков рядом свойств.

а) Кривая намагничивания ферромагнетиков имеет сложный характер (рис.1), для парамагнетиков она представляет прямую линию с положительным угловым
коэффициентом, для диамагнетиков – прямую с отрицательным угловым коэффициентом. Магнитная восприимчивость и проницаемость ферромагнетиков зависит от напряженности поля; у парамагнетиков и диамагнетиков этой зависимости нет.

Для ферромагнетиков обычно указывается начальная магнитная проницаемость (μ нач) – предельное значение магнитной проницаемости, когда напряженность и индукция поля близки к нулю, т. е.

Кривая зависимости μ от H для ферромагнетиков проходит через максимум. В таблицах обычно указывается и максимальное значение (μ макс).

б) Магнитная восприимчивость ферромагнетиков растет с увеличением температуры. При некоторой температуре T к ферромагнетик превращается в парамагнетик; эта температура называется температурой Кюри (точкой Кюри ). При температурах выше точки Кюри вещество является парамагнетиком. Вблизи температуры Кюри магнитная восприимчивость ферромагнетика резки возрастает.

Магнитная восприимчивость диамагнетиков и некоторых парамагнетиков (например, в щелочных металлах) не зависит от температуры. Магнитная восприимчивость парамагнетиков (за немногими исключениями) изменяется обратно пропорционально абсолютной температуре.

в) Размагниченный ферромагнетик намагничивается магнитным полем; зависимость B (или I ) от H при намагничивании будет выражаться кривой 0–1 (рис.1). Эта кривая называется начальной кривой намагничивания. Намагниченность в слабых полях растет быстро, затем рост замедляется и, наконец, наступает состояние насыщения, при котором намагниченность практически остается постоянной при дальнейшем увеличении поля.

Максимальное значение намагниченности называется намагниченностью насыщения (I s ).

При уменьшении H до нуля B I ) будут изменяться по кривой 1–2; происходит отставание изменения индукции от изменения напряженности поля. Это явление называется магнитным гистерезисом .

Величина индукции, сохраняющаяся в ферромагнетике после снятия поля (когда H = 0), называется остаточной индукцией (B r ). На рис.1 B r равна отрезку 0–2. Чтобы размагнитить ферромагнетик, нужно снять остаточную индукцию. Для этого необходимо создать поле противоположного направления. Изменение индукции в попе противоположного направления изобразится кривой 2–3–4.

Напряженность поля H c (отрезок 0–3 на рис.8), при которой индукция равна нулю, называется коэрцитивной напряженностью (силой).

Зависимость B (или I ) от периодически изменяющейся напряженности магнитного поля от +H до -H выражается замкнутой кривой 1–2–3–4–5–6–1. Такая кривая называется петлей гистерезиса .

За один цикл изменения напряженности поля от +H до -H расходуется энергия, пропорциональная площади петли гистерезиса.

Свойства ферромагнетиков объясняются наличием в них областей, которые в отсутствие внешнего магнитного поля самопроизвольно намагничены до насыщения. Эти области называют доменами. Но расположение и намагниченность этих областей таковы, что и отсутствие поля общая намагниченность всего тела равна нулю.

Когда ферромагнетик находится в магнитном поле, границы между доменами смещаются (в слабых полях) и векторы намагниченности доменов поворачиваются по направлению намагничивающего поля (в более сильных полях), в результате чего ферромагнетик намагничивается.

Ферромагнетик, помещенный в магнитное поле, изменяет свои линейные размеры, т. е. деформируется. Это явление называется магнитострикцией. Относительное удлинение зависит от природы ферромагнетика и напряженности магнитного поля.

Величина магнитострикционного эффекта не зависит от направления поля; у одних веществ наблюдается укорочение (никель), у других удлинение (железо в слабых полях) вдоль ноля. Это явление используется для получения ультразвуковых колебаний с частотами до 100 кГц.

«Физика - 11 класс»

Магнитное поле создается электрическими токами и постоянными магнитами.
Все вещества, помещенные в магнитное поле, создают собственное магнитное поле.


Намагничивание вещества.

Все вещества, помещенные в магнитное поле, намагничиваются, т. е. сами становятся источниками магнитного поля.
В результате этого вектор магнитной индукции при наличии вещества отличается от вектора магнитной индукции в вакууме.


Гипотеза Ампера

Причина, вследствие которой тела обладают магнитными свойствами, была установлена французским физиком Ампером: магнитные свойства тела можно объяснить циркулирующими внутри него токами.

Внутри молекул и атомов существуют элементарные электрические токи, которые образуются вследствие движения электронов в атомах.
Если плоскости, в которых циркулируют эти токи, расположены беспорядочно по отношению друг к другу из-за теплового движения молекул, то их действия взаимно компенсируются, и никаких магнитных свойств тело не обнаруживает

В намагниченном состоянии элементарные токи в теле ориентированы так, что их действия складываются.

Наиболее сильные магнитные поля создают вещества, называемые ферромагнетиками .
Из них делают постоянные магниты, так как поле ферромагнетика не исчезает после выключения намагничивающего поля.

Магнитные поля создаются ферромагнетиками не только вследствие обращения электронов вокруг ядер, но и вследствие их собственного вращения. В ферромагнетиках существуют области, называемые доменами размером около 0,5 мкм.

Если ферромагнетик не намагничен, то ориентация доменов хаотична, и суммарное магнитное поле, создаваемое доменами, равно нулю.
При включении внешнего магнитного поля домены ориентируются вдоль линий магнитной индукции этого поля, и индукция магнитного поля в ферромагнетиках увеличивается, становясь в тысячи и даже миллионы раз больше индукции внешнего поля.

Температура Кюри.

При температурах, больших некоторой определенной для данного ферромагнетика, его ферромагнитные свойства исчезают.
Эту температуру называют температурой Кюри по имени открывшего данное явление французского ученого.
При нагревании намагниченные тела теряют свои магнитные свойства.
Например, температура Кюри для железа 753 °С.
Существуют ферромагнитные сплавы, у которых температура Кюри меньше 100 °С.


Применение ферромагнетиков

Ферромагнитных тел в природе не так много, но они нашли широкое применение.
Например, сердечник, установленный в катушке, усиливает создаваемое ею магнитное поле, не увеличивая силу тока в катушке.
Сердечники трансформаторов, генераторов, электродвигателей и т. д. изготовляют из ферромагнетиков.

При выключении внешнего магнитного поля ферромагнетик остается намагниченным, т. е. создает магнитное поле в окружающем пространстве.
Благодаря этому существуют постоянные магниты.

Большое применение получили ферриты - ферромагнитные материалы, не проводящие электрического тока, это химические соединения оксидов железа с оксидами других веществ.
Один из известных ферромагнитных материалов - магнитный железняк - является ферритом.

Ферромагнетики используются для магнитной записи информации.
Из ферромагнетиков изготовляют магнитные ленты и магнитные пленки, которые используют для звукозаписи в магнитофонах и для видеозаписи в видеомагнитофонах.

Запись звука производят на ленту с помощью электромагнита, магнитное поле которого изменяется в такт со звуковыми колебаниями.
При движении ленты вблизи магнитной головки различные участки пленки намагничиваются.

Схема магнитной индукционной головки

где
1 - сердечник электромагнита;
2 - магнитная лента;
3 - рабочий зазор;
4 обмотка электромагнита.

Развитие технологии магнитной записи привело к появлению магнитных микроголовок, которые используются в ЭВМ, позволяющих создавать большую плотность магнитной записи, так на ферромагнитном жестком диске диаметром в несколько сантиметров хранится до нескольких терабайт (10 12 байт) информации. Считывание и запись информации на таком диске осуществляется с помощью микроголовки. Диск вращается с огромной скоростью, и головка плавает над ним в потоке воздуха, что предотвращает возможность механического повреждения диска.

МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВ

Магнетизм - фундаментальное свойство материи. С глубокой древности известно свойство постоянных магнитов притягивать железные предметы. Много веков среди мореплавателей существовала легенда о магнитной скале, которая якобы способна притянуть из слишком близко подплывшего к ней корабля железные гвозди и разрушить его. К счастью, такое сильное магнитное поле может существовать только в окрестностях нейтронных звезд. Развитие электромагнетизма позволило создать электромагниты более сильные, чем существующие в природе постоянные. Вообще различные приборы и устройства, основанные на использовании электромагнитных явлений, распространены настолько широко, что сейчас без них нельзя уже представить жизни.

Однако с магнитным полем взаимодействуют не только постоянные магниты, но и все остальные вещества. Магнитное поле, взаимодействуя с веществом, изменяет свою величину по сравнению с вакуумом (здесь и далее все формулы записаны в системе СИ):

где m0 - магнитная постоянная, равная 4p " 10-7 Гн/м, m - магнитная проницаемость вещества, B - магнитная индукция (в Тл), H - напряженность магнитного поля (в А/м). Для большинства веществ m очень близка к единице, поэтому в магнетохимии, где основным объектом является молекула, удобнее использовать величину c, определяемую уравнением, которая называется магнитной восприимчивостью. c можно отнести к единице объема, массы или количества вещества, тогда она называется соответственно объемной (безразмерной) cv , удельной cd (в см3/г) или молярной cм (в см3/моль) магнитной восприимчивостью. Понятно, что, следуя формуле (2), c вакуума равна нулю. Вещества можно разделить на две категории: те, которые ослабляют магнитное поле (c 0), - парамагнетиками (рис. 1). Можно представить себе, что в неоднородном магнитном поле на диамагнетик действует сила, выталкивающая его из поля, на парамагнетик, наоборот, - втягивающая. На этом основаны рассмотренные ниже методы измерения магнитных свойств веществ. Диамагнетики (а это подавляющее большинство органических и высокомолекулярных соединений) и главным образом парамагнетики являются объектами изучения магнетохимии.

Диамагнетизм - важнейшее свойство материи, обусловленное тем, что под действием магнитного поля электроны в заполненных электронных оболочках (которые можно представить как маленькие проводники) начинают прецессировать, а, как известно, любое движение электрического заряда вызывает магнитное поле, которое по правилу Ленца будет направлено так, чтобы уменьшить воздействие со стороны внешнего поля. Электронную прецессию при этом можно рассматривать как круговые токи. Диамагнетизм свойствен всем веществам, кроме атомарного водорода, потому что у всех веществ имеются спаренные электроны и заполненные электронные оболочки.

Парамагнетизм обусловлен неспаренными электронами, которые называются так потому, что их собственный магнитный момент (спин) ничем не уравновешен (соответственно спины спаренных электронов направлены в противоположные стороны и компенсируют друг друга). В магнитном поле спины стремятся выстроиться по направлению поля, усиливая его, хотя этот порядок и нарушается хаотическим тепловым движением. Поэтому понятно, что парамагнитная восприимчивость зависит от температуры - чем ниже температура, тем выше значение cм. В простейшем случае это выражается зависимостью, которая называется законом Кюри: где C - константа Кюри, или законом Кюри-Вейсса, где q - поправка Вейсса. Этот вид магнитной восприимчивости еще называют ориентационным парамагнетизмом, так как его причина - ориентация элементарных магнитных моментов во внешнем магнитном поле.

Магнитные свойства электронов в атоме можно описывать двумя способами. В первом способе считается, что собственный (спиновый) магнитный момент электрона не оказывает влияния на орбитальный (обусловленный движением электронов вокруг ядра) момент или наоборот. Точнее, такое взаимное влияние есть всегда (спин-орбитальное взаимодействие), но для 3d-ионов оно мало, и магнитные свойства можно с достаточной точностью описывать двумя квантовыми числами L (орбитальное) и S (спиновое). Для более тяжелых атомов такое приближение становится неприемлемым и вводится еще одно квантовое число полного магнитного момента J, которое может принимать значения от | L + S | до | L - S | . Ван-Флек рассмотрел энергетические вклады орбиталей в зависимости от влияния магнитного поля (согласно квантовомеханической теории возмущений их можно разложить в ряд и суммировать): где H - напряженность магнитного поля и соответственно E (0) - вклад, независимый от внешнего поля, E (1) - вклад, прямо пропорциональный полю, и т.д. При этом оказалось, что энергия нулевого порядка определяется спин-орбитальным взаимодействием, важным в описании химических связей:

где l - константа спин-орбитального взаимодействия. Энергия первого порядка (взаимодействия магнитного момента неспаренного электрона (m = gbS) с магнитным полем H) равна

где g - фактор Ланде, обычно равный двум для большинства соединений, b - магнетон Бора, равный 9,27 " 10-19 эрг/Э (напомним, что энергия магнитных взаимодействий - это скалярное произведение векторов магнитных моментов m и H). E (2) - энергетический вклад, который придется принять на веру, так как он зависит от тонких особенностей электронного строения и его сложно объяснить с точки зрения классической физики. Следует обратить внимание на малость величины энергии магнитного взаимодействия (для комнатных температур и магнитных полей, обычных в лаборатории, энергия магнитных взаимодействий на три-четыре порядка меньше, чем энергия теплового движения молекул).

После математических преобразований выражение для макроскопической магнитной восприимчивости с учетом больцмановского распределения ансамбля магнитных моментов по энергетическим уровням принимает вид (его вывод изложен, например, в )

Это и есть уравнение Ван-Флека - основное в магнетохимии, связывающее магнитные свойства со строением молекул. Здесь NA - число Авогадро, k - постоянная Больцмана. С некоторыми крайними случаями его мы уже встречались выше. Если = 0, а можно пренебречь, то мы получаем в результате закон Кюри (ср. уравнение (3)), но в более строгой форме.

Видно, что закон Кюри отражает так называемый чисто спиновый магнетизм, характерный для большинства парамагнитных соединений, например солей меди, железа, никеля и других переходных металлов. Если = 0 и @ kT, то уравнение Ван-Флека значительно упрощается:где Na - температурно независимый (ван-флековский) парамагнетизм. Как видно из изложенного, ван-флековский парамагнетизм - явление чисто квантовое и необъяснимо с позиций классической физики. Его можно представить как примешивание к основному состоянию молекулы возбужденных энергетических уровней .

Существует довольно много веществ, которые при понижении температуры ведут себя сначала как парамагнетики, а затем при достижении определенной температуры резко меняют свои магнитные свойства. Самый известный пример - ферромагнетики и вещество, по которому они получили свое название, - железо, атомные магнитные моменты которого ниже температуры Кюри (в этом случае равной TC = 770?C) выстраиваются в одном направлении, вызывая спонтанную намагниченность. Однако макроскопической намагниченности при отсутствии поля не возникает, так как образец самопроизвольно разделяется на области размером около 1 мкм, называемые доменами, в пределах которых элементарные магнитные моменты направлены одинаково, но намагниченности разных доменов ориентированы случайно и в среднем компенсируют друг друга. Силы, вызывающие ферромагнитный переход, можно объяснить только при помощи законов квантовой механики.

Антиферромагнетики характеризуются тем, что спиновые магнитные моменты при температуре антиферромагнитного перехода (температура Нееля TN) упорядочиваются так, что взаимно компенсируют друг друга. Максимальное значение магнитной восприимчивости достигается при TN , выше которой c уменьшается по закону Кюри-Вейсса, ниже - вследствие так называемых обменных взаимодействий. Антиферромагнетиками являются, например, MnO и KNiF3 .

Если компенсация магнитных моментов неполная, то такие вещества называются ферримагнетиками, например Fe2O3 и FeCr2O4 . Последние три класса соединений (табл. 1) являются твердыми телами и изучаются в основном физиками. За последние десятилетия физики и химики создали новые магнитные материалы, более подробно о свойствах которых можно узнать в .

В молекуле, содержащей неспаренный электрон, остальные (спаренные) электроны ослабляют магнитное поле, но вклад каждого из них на два-три порядка меньше. Однако если мы хотим очень точно измерить магнитные свойства неспаренных электронов, то должны вводить так называемые диамагнитные поправки, особенно для больших органических молекул, где они могут достигать десятков процентов. Диамагнитные восприимчивости атомов в молекуле складываются друг с другом согласно правилу аддитивности Паскаля-Ланжевена . Для этого диамагнитные восприимчивости атомов каждого сорта умножают на количество таких атомов в молекуле, а затем вводят конститутивные поправки на особенности строения (двойные и тройные связи, ароматические кольца и т.п.). Перейдем к рассмотрению того, как же экспериментально изучают магнитные свойства веществ.

ЭКСПЕРИМЕНТАЛЬНОЕ ИЗМЕРЕНИЕ МАГНИТНОЙ ВОСПРИИМЧИВОСТИ

Основные экспериментальные методы определения магнитной восприимчивости были созданы еще в прошлом веке. Согласно методу Гуи (рис. 2, а), измеряется изменение веса образца в магнитном поле по сравнению с его отсутствием, которое равно где Dmg = F - сила, воздействующая на вещество в градиенте магнитного поля, c - измеряемая магнитная восприимчивость вещества, c0 - магнитная восприимчивость среды (воздуха), S - площадь поперечного сечения образца, Hmax и Hmin - максимальная и минимальная напряженность внешнего магнитного поля.

По методу Фарадея (рис. 2, б) измеряется сила, действующая на образец в неоднородном магнитном поле:

Образец выбирается малым, чтобы H0dH / dz в его пределах оставалось постоянной, а максимальное значение параметра достигается выбором специального профиля наконечников магнита. Основное отличие метода Гуи от метода Фарадея заключается в том, что в первом случае поддерживается неоднородность по (протяженному) образцу, а во втором - по магнитному полю.

Метод Квинке (рис. 2, в) применяется только для жидкостей и растворов. В нем измеряется изменение высоты столбика жидкости в капилляре под действием магнитного поля.

При этом для диамагнитных жидкостей высота столбика понижается, для парамагнитных повышается.

По методу вискозиметра измеряется время истечения жидкости через малое отверстие при включенном (tH) и выключенном (t0) магнитном поле. Время истечения парамагнитных жидкостей в магнитном поле заметно меньше, чем при отсутствии поля, для диамагнитных - наоборот. Разность двух времен истечения определяется магнитной восприимчивостью, а значение калибровочной константы k определяется при помощи измерения жидкости с известной магнитной восприимчивостью. Объемные магнитные восприимчивости некоторых распространенных растворителей приведены ниже.

Магнитную восприимчивость можно измерить и при помощи ЯМР-спектрометра. О физических основах метода ЯМР можно прочитать в . Мы ограничимся лишь тем, что отметим: величина химического сдвига сигнала ЯМР в общем случае определяется не только константой экранирования, которая является мерой электронной плотности на исследуемом ядре, но и магнитной восприимчивостью образца. Для образца в форме прямоугольного параллелепипеда химический сдвиг определяется еще и ориентацией образца в магнитном поле,где калибровочные константы A и B определяются измерением двух жидкостей с известной магнитной восприимчивостью (чаще всего воды и ацетона). Этот метод был развит на кафедре неорганической химии Казанского университета и является единственным, который позволяет производить калибровку прибора по диамагнитным стандартам, а затем проводить измерения также и с парамагнитными образцами . Таким образом были измерены магнитные восприимчивости многих веществ. Что же они позволили узнать об их строении?

Полученное значение магнитной восприимчивости для парамагнетиков определяется количеством неспаренных электронов (ср. с (9) для одного неспаренного электрона)

Таким образом можно определить спиновое квантовое число S, а следовательно, и число неспаренных электронов. Следует отметить, что в реальных соединениях g-фактор несколько изменяется от величины "чисто спинового" значения, равного, как отмечалось выше, двум.

Значения cм парамагнитных веществ малы и не очень удобны при объяснении строения соединений. Поэтому чаще парамагнитную восприимчивость характеризуют эффективным магнитным моментом meff , который определяется уравнением.

Тогда при температуре 298 К "чисто спиновое" значение для одного неспаренного электрона ms = = 1,73 магнетона Бора (mБ), для двух - 3,46 mБ и т.д. (табл. 2). Вклад других факторов, в первую очередь спин-орбитального взаимодействия, отражается на величине g-фактора и приводит к тому, что meff отличается от ms.

Знание количества неспаренных электронов помогает понять некоторые особенности размещения элементов в Периодической системе Д.И. Менделеева. Так, электронные оболочки, заполненные полностью либо точно наполовину, обладают повышенной устойчивостью. С возрастанием относительной атомной массы мы впервые сталкиваемся с этим у хрома. Сравним электронные конфигурации в основном состоянии: Sc 3d 14s 2, Ti 3d 24s 2, V 3d 34s 2, следующий хром не 3d 44s 2, а 3d 54s 1, более устойчивая полузаполненная оболочка подчеркнута:

А установлено это именно по измерениям магнитной восприимчивости, когда было обнаружено, что атом хрома содержит шесть неспаренных электронов, а не четыре. Правда, для этого пришлось выполнить довольно тонкие измерения на изолированных атомах в газовой фазе, так как магнитные свойства проводников не связаны с числом неспаренных электронов (потому что валентные электроны в металлах не привязаны к определенным атомам, а хаотически движутся по всему кристаллу), а определяются квантовыми законами (так называемые диамагнетизм Ферми и парамагнетизм Ландау ). В то же время, например, порядок заполнения 5d- и 4f-орбиталей в ряду лантанидов не изменяет числа неспаренных электронов, поэтому правильные электронные конфигурации были установлены только в 60-е годы путем квантовомеханических расчетов (по магнитным измерениям нельзя различить конфигурации 5d 1 и 4f 1). Тем не менее магнетохимические исследования позволяют установить электронную конфигурацию, как, наверное, уже заметил внимательный читатель, соединений переходных металлов, которые составляют основу химии координационных (комплексных) соединений.

Координационные соединения образуются, как правило, за счет донорно-акцепторной связи, то есть неподеленные пары электронов лигандов занимают вакантные места на орбиталях центрального атома. При этом количество неспаренных электронов и магнитный момент ионов-комплексообразователей остается таким же, как и у свободного иона в газовой фазе. Это справедливо для аквакомплексов переходных металлов, например железа(II) (рис. 3). Однако существуют также магнитно-аномальные комплексы, магнитный момент которых ниже, чем у газообразного иона. Их электронную структуру можно объяснить в рамках метода валентных связей следующим образом. Очень многие комплексные соединения имеют координационное число шесть. Шесть лигандов симметрично расположены в вершинах октаэдра. Для того чтобы получить шесть гибридных орбиталей, в их образовании должны принять участие шесть валентных орбиталей центрального атома: такое перераспределение электронной плотности называется sp3d 2-гибридизацией (ср. с sp3-гибридизацией атома углерода в алканах, где четыре связи направлены к вершинам тетраэдра). Обратите внимание, что в образовании гибридных орбиталей принимают участие d-орбитали с таким же порядковым номером, что и s, p-орбитали. Это объясняется тем, что расположенные ниже по энергии внутренние d-орбитали заняты собственными электронами иона металла. Для того чтобы занять расположенные ниже по энергии орбитали, лиганды должны вынудить собственные электроны иона металла спариться и освободить внутренние d-орбитали для так называемой d 2sp 3-гибридизации. Это могут сделать только лиганды сильного поля, образующие прочные связи с ионом металла, например цианид-ионы в комплексном гексацианоферрате(II) (см. рис. 3).

Соответственно первый тип комплексов, обладающий высоким магнитным моментом, называется внешнеорбитальным комплексом, а второй тип с пониженным магнитным моментом - внутриорбитальным комплексом. Это различие, приводящее к изменению числа неспаренных электронов в комплексе, приводит к изменению магнитных моментов внешне- и внутриорбитальных комплексов соответственно и, вызвано энергетической неравноценностью соответствующих d-орбиталей (обычно ее называют энергией расщепления в поле лигандов и обозначают D или 10Dq ).

По способности образовывать внутриорбитальные комплексы (по величине D) все лиганды можно расположить в ряд, который называется спектрохимическим рядом лигандов:

CN- > NO2- > SO32- > NH3 > NCS- > H3O >

> OH- > F- > Cl- > Br- > I-

Он получил свое название, потому что окраска комплекса зависит от положения лиганда в этом ряду, и в этом проявляется связь оптических и магнитных свойств координационных соединений .

Таким образом, измеряя магнитную восприимчивость, можно легко судить о степени окисления и геометрии первой координационной сферы в комплексе. Данные по магнитной восприимчивости ряда ионов переходных металлов и лантанидов приведены в табл. 2. Видно, что магнитные свойства 3d-ионов в большинстве случаев хорошо соответствуют чисто спиновым значениям ms , а для объяснения магнитных свойств лантанидов требуется уже более сложная модель с привлечением упомянутого выше квантового числа J.

Известно, что большинство важных на практике химических реакций протекают в растворах, к ним относятся также и реакции комплексообразования, поэтому в следующем разделе рассмотрим магнитные свойства растворов, в которых соединения переходных металлов реализуются в виде комплексов.

МАГНИТНАЯ ВОСПРИИМЧИВОСТЬ РАСТВОРОВ

При переходе от твердого тела к раствору следует учитывать магнитные восприимчивости растворителя и всех растворенных веществ. При этом простейшим способом такого учета будет суммирование вкладов всех компонентов раствора по правилу аддитивности. Принцип аддитивности - один из основополагающих принципов в обработке экспериментальных данных. Временами он даже подводит экспериментаторов, потому что человеческому разуму трудно представить себе другой механизм взаимодействия разнообразных факторов, помимо простого их сложения. Любые отклонения от него чаще связывают с тем, что сам принцип аддитивности выполняется, а компоненты раствора изменяют свои свойства. Поэтому принимается, что магнитная восприимчивость раствора равна сумме магнитных восприимчивостей отдельных компонентов с учетом концентрации где ci - концентрация (в моль/л), cмi - молярная магнитная восприимчивость i-го компонента раствора, коэффициент 1/1000 используется для перехода к молярной концентрации. При этом суммирование производится по всем растворенным веществам и растворителю . Можно заметить, что вклады парамагнитных и диамагнитных веществ в измеряемую магнитную восприимчивость противоположны по знаку и их можно разделить

cv(изм) = cv(пара) - cv(диа).

При исследовании магнитных свойств одного и того же вещества в разных растворителях (табл. 3) видно, что они могут заметно зависеть от природы растворителя. Это можно объяснить вхождением молекул растворителя в первую координационную сферу и изменением соответственно электронного строения комплекса, энергий d-орбиталей (D) и других свойств сольватокомплекса. Таким образом, магнетохимия позволяет изучать и сольватацию, то есть взаимодействие растворяемого вещества с растворителем.

В растворах определение cм и meff координационных соединений позволяет, как это видно из изложенного выше теоретического материала, определить ряд структурных параметров (l, S, D), что делает магнетохимические исследования весьма ценными. Разные комплексы одного и того же иона металла могут заметно отличаться по величине эффективного магнитного момента. На примере меди(II) видно, что при комплексообразовании эффективный магнитный момент увеличивается, а когда образуется димерный комплекс - уменьшается вследствие антиферромагнитного взаимодействия неспаренных электронов ионов меди(II). Магнитные свойства комплексных соединений меди(II) приведены ниже. (При записи формул использованы сокращенные обозначения лигандов, принятые в координационной химии: acac - ацетилацетон CH3COCH3COCH3 , H4Tart - винная кислота HOOC(CHOH)2COOH.)

Несколько слов о "магнитной" воде, точнее, о водных растворах (поскольку даже в дистиллированной воде содержатся примеси, например растворенный кислород, а он парамагнитен). Эта тема, конечно, требует отдельного рассмотрения, мы затронем ее лишь в связи с магнетохимией. Если магнитное поле влияет на свойства раствора, а многочисленные экспериментальные факты (измерения плотности, вязкости, электропроводности, концентрации протонов, магнитной восприимчивости) свидетельствуют, что это так , то следует признать, что энергия взаимодействий отдельных компонентов раствора и ансамбля молекул воды достаточно высока, то есть сопоставима или превышает энергию теплового движения частиц в растворе, которое усредняет всякое воздействие на раствор. Напомним, что энергия магнитного взаимодействия одной частицы (молекулы) мала по сравнению с энергией теплового движения. Такое взаимодействие возможно, если принять, что в воде и водных растворах за счет кооперативного характера водородных связей реализуются большие льдоподобные структурные ансамбли молекул воды, которые могут упрочняться или разрушаться под воздействием растворенных веществ . Энергия образования таких "ансамблей", по-видимому, сопоставима с энергией теплового движения и под магнитным воздействием раствор может запомнить его и приобрести новые свойства, но броуновское движение или повышение температуры ликвидирует эту "память" в течение некоторого времени.

Обратите внимание, что, точно подбирая концентрации парамагнитных веществ в диамагнитном растворителе, можно создать немагнитную жидкость, то есть такую, средняя магнитная восприимчивость которой равна нулю или в которой магнитные поля распространяются точно так же, как и в вакууме. Это интересное свойство пока не нашло применения в технике.

Магнитными свойствами обладают в той или иной мере все материалы, так как эти свойства являются отражением структурных закономерностей, присущих веществу на микроуровне. Особенности структуры обусловливают различия в магнитных свойствах веществ, то есть в характере их взаимодействия с магнитным полем.

Строение вещества и магнетизм

Первая теория, объясняющая природу магнетизма через взаимосвязь электрических и магнитных явлений, создана французским физиком Ж.-М. Ампером в 20-х годах XIX века. В рамках этой теории Ампер предположил наличие в физических телах микроскопических замкнутых токов, обычно компенсирующих друг друга. Но у веществ, обладающих магнитными свойствами, такие «молекулярные токи» создают поверхностный ток, в результате чего материал становится постоянным магнитом. Эта гипотеза не нашла подтверждения, за исключением одной важнейшей идеи – о микротоках как источниках магнитных полей.

Микротоки в веществе действительно существуют благодаря движению электронов в атомах и создают магнитный момент. Кроме того, электроны имеют собственный магнитный момент квантовой природы.

Суммарный магнитный момент вещества, то есть совокупности элементарных токов в нем, в отношении к единице объема, определяет состояние намагниченности макроскопического тела. У большей части веществ моменты частиц ориентированы неупорядоченно (ведущую роль в этом играют тепловые хаотические колебания), и намагниченность практически равна нулю.

Поведение вещества в магнитном поле

При действии внешнего магнитного поля векторы магнитных моментов частиц изменяют направление – тело намагничивается, в нем появляется собственное магнитное поле. Характер этого изменения и его интенсивность, определяющие магнитные свойства веществ, обусловлены различными факторами:

  • особенности структуры электронных оболочек в атомах и молекулах вещества;
  • межатомные и межмолекулярные взаимодействия;
  • особенности структуры кристаллических решеток (анизотропия);
  • температура вещества;
  • напряженность и конфигурация магнитного поля и так далее.

Намагниченность вещества пропорциональна напряженности магнитного поля в нем. Их соотношение определяется особым коэффициентом – магнитной восприимчивостью. У вакуума она равна нулю, у некоторых веществ отрицательна.

Величину, характеризующую соотношение магнитной индукции и напряженности поля в веществе, принято называть магнитной проницаемостью. В вакууме индукция и напряженность совпадают, и проницаемость его равна единице. Магнитную проницаемость вещества можно выражать как относительную величину. Это соотношение абсолютных значений ее для данного вещества и для вакуума (последняя величина принята в качестве магнитной постоянной).

Классификация веществ по магнитным свойствам

По типу поведения различных твердых материалов, жидкостей, газов в магнитном поле выделяют несколько групп:

  • диамагнетики;
  • парамагнетики;
  • ферромагнетики;
  • ферримагнетики;
  • антиферромагнетики.

Основные магнитные характеристики вещества, лежащие в основе классификации – это магнитная восприимчивость и магнитная проницаемость. Охарактеризуем основные свойства, присущие каждой группе.


Диамагнетики

В силу некоторых особенностей строения электронных облаков у атомов (или молекул) диамагнетиков нет магнитного момента. Он появляется при возникновении внешнего поля. Индуцированное, наведенное поле имеет противоположное направление, и результирующее поле оказывается несколько слабее, чем внешнее. Правда, разница эта не может быть существенной.

Магнитная восприимчивость диамагнетиков выражается отрицательными числами с порядком величины от 10-4 до 10-6 и не зависит от напряженности поля; магнитная проницаемость ниже, чем у вакуума, на тот же порядок величины.

Наложение неоднородного магнитного поля ведет к тому, что диамагнетик выталкивается этим полем, так как стремится сместиться в область, где поле слабее. На этой особенности магнитных свойств веществ данной группы основан эффект диамагнитной левитации.

Диамагнетики представляют обширную группу веществ. В нее входят такие металлы, как медь, цинк, золото, серебро, висмут. Также к ней относятся кремний, германий, фосфор, азот, водород, инертные газы. Из сложных веществ – вода, многие соли, органические соединения. Идеальные диамагнетики – это сверхпроводники. Магнитная проницаемость их равна нулю. Поле внутрь сверхпроводника проникнуть не может.

Парамагнетики

Принадлежащим к данной группе веществам свойственна положительная магнитная восприимчивость (очень невысокая, порядка 10-5 – 10-6). Намагничиваются они параллельно вектору накладываемого поля, то есть втягиваются в него, но взаимодействие парамагнетиков с ним очень слабое, как и у диамагнетиков. Магнитная проницаемость их близка к значению проницаемости вакуума, только слегка превосходит его.


В отсутствие внешнего поля парамагнетики, как правило, не обладают намагниченностью: их атомы имеют собственные магнитные моменты, но ориентированы они хаотически из-за тепловых колебаний. При низких температурах парамагнетики могут иметь собственную намагниченность малой величины, сильно зависящую от внешних воздействий. Однако влияние теплового движения слишком велико, вследствие чего элементарные магнитные моменты парамагнетиков никогда не устанавливаются точно по направлению поля. В этом и заключается причина их низкой магнитной восприимчивости.

Силы межатомного и межмолекулярного взаимодействия также играют значительную роль, способствуя либо, напротив, оказывая сопротивление упорядочиванию элементарных магнитных моментов. Это обусловливает большое разнообразие магнитных свойств вещества парамагнетиков.

К этой группе веществ относятся многие металлы, например вольфрам, алюминий, марганец, натрий, магний. Парамагнетиками являются кислород, соли железа, некоторые оксиды.

Ферромагнетики

Существует небольшая группа веществ, которые благодаря особенностям структуры обладают очень высокими магнитными свойствами. Первым металлом, у которого обнаружились эти качества, было железо, и благодаря ему данная группа получила наименование ферромагнетиков.


Строение ферромагнетиков характеризуется наличием особых структур – доменов. Это области, где намагниченность образуется спонтанно. Благодаря особенностям межатомного и межмолекулярного взаимодействия у ферромагнетиков устанавливается наиболее энергетически выгодное расположение атомных и электронных магнитных моментов. Они приобретают параллельную направленность по так называемым направлениям легкого намагничивания. Однако весь объем, например, кристалла железа не может приобрести однонаправленную самопроизвольную намагниченность – это повышало бы общую энергию системы. Поэтому система разбивается на участки, спонтанная намагниченность которых в ферромагнитном теле компенсирует друг друга. Так образуются домены.

Магнитная восприимчивость ферромагнетиков чрезвычайно велика, может составлять от нескольких десятков до сотен тысяч и в большой степени зависит от напряженности внешнего поля. Причина этого заключается в том, что ориентация доменов по направлению поля также оказывается энергетически выгодной. Направление вектора намагниченности части доменов обязательно совпадет с вектором напряженности поля, и энергия их будет наименьшей. Такие области разрастаются, и одновременно сокращаются невыгодно ориентированные домены. Намагниченность увеличивается, и нарастает магнитная индукция. Процесс происходит неравномерно, и график связи индукции с напряженностью внешнего поля называют кривой намагничивания ферромагнитного вещества.

При повышении температуры до некоторой пороговой величины, называемой точкой Кюри, доменное строение вследствие усиления теплового движения нарушается. В этих условиях ферромагнетик проявляет парамагнитные качества.

Помимо железа и стали, ферромагнитные свойства присущи кобальту и никелю, некоторым сплавам и редкоземельным металлам.

Ферримагнетики и антиферромагнетики

Двум видам магнетиков также свойственна доменная структура, но магнитные моменты в них ориентируются антипараллельно. Это такие группы, как:

  • Антиферромагнетики. Магнитные моменты доменов в этих веществах равны по численному значению и взаимно скомпенсированы. По этой причине магнитные свойства материалов антиферромагнетиков характеризуются крайне низкой магнитной восприимчивостью. Во внешнем поле они проявляют себя как очень слабые парамагнетики. Выше пороговой температуры, называемой точкой Нееля, такое вещество становится обычным парамагнетиком. Антиферромагнетиками являются хром, марганец, некоторые редкоземельные металлы, актиноиды. Некоторые антиферромагнитные сплавы имеют две точки Нееля. Когда температура меньше нижнего порога, материал становится ферромагнитным.
  • Ферримагнетики. У веществ этого класса величины магнитных моментов разных структурных единиц не равны, благодаря чему не происходит их взаимной компенсации. Магнитная восприимчивость их зависит от температуры и напряженности намагничивающего поля. К ферримагнетикам относятся ферриты, в состав которых входит оксид железа.

Понятие о гистерезисе. Постоянный магнетизм

Ферромагнитные и ферримагнитные материалы обладают свойством остаточной намагниченности. Это свойство обусловлено явлением гистерезиса – запаздывания. Суть его состоит в отставании изменения намагниченности материала от изменения внешнего поля. Если по достижении насыщения снижать напряженность поля, намагниченность будет меняться не в соответствии с кривой намагничивания, а более пологим образом, так как значительная часть доменов остается ориентирована соответственно вектору поля. Благодаря этому явлению существуют постоянные магниты.

Размагничивание происходит при перемене направления поля, при достижении им некоторой величины, называемой коэрцитивной (задерживающей) силой. Чем больше ее величина, тем лучше вещество удерживает остаточную намагниченность. Замыкание петли гистерезиса происходит при следующем изменении напряженности по направлению и величине.


Магнитная твердость и мягкость

Явление гистерезиса сильно влияет на магнитные свойства материалов. Вещества, у которых на графике гистерезиса петля расширена, требующие для размагничивания значительной коэрцитивной силы, называют магнитотвердыми, материалы с узкой петлей, гораздо легче поддающиеся размагничиванию – магнитомягкими.

В переменных полях магнитный гистерезис проявляется особенно ярко. Он всегда сопровождается выделением тепла. Кроме того, в переменном магнитном поле в магнетике возникают вихревые индукционные токи, выделяющие особенно много тепла.

Многие ферромагнетики и ферримагнетики применяются в оборудовании, функционирующем на переменном токе (например, сердечники электромагнитов) и при работе все время перемагничиваются. Для того чтобы уменьшить энергопотери на гистерезис и динамические потери на вихревые токи, в таком оборудовании применяют магнитомягкие материалы, такие как чистое железо, ферриты, электротехнические стали, сплавы (например, пермаллой). Есть и другие способы минимизировать потери энергии.

Магнитотвердые вещества, напротив, используются в оборудовании, работающем на постоянном магнитном поле. Они значительно дольше сохраняют остаточную намагниченность, но их труднее намагнитить до насыщения. Многие из них в настоящее время представляют собой композиты разных типов, например, металлокерамические или неодимовые магниты.

Еще немного об использовании магнитных материалов

Современные высокотехнологичные производства требуют применения магнитов, изготовляемых из конструкционных, в том числе композитных материалов с заданными магнитными свойствами веществ. Таковы, например, магнитные нанокомпозиты ферромагнетик-сверхпроводник или ферромагнетик-парамагнетик, используемые в спинтронике, или магнитополимеры – гели, эластомеры, латексы, феррожидкости, находящие самое широкое применение.


Различные магнитные сплавы тоже чрезвычайно востребованы. Сплав неодим-железо-бор характеризуется высокой устойчивостью к размагничиванию и мощностью: упомянутые выше неодимовые магниты, являясь наиболее мощными на сегодняшний день постоянными магнитами, применяются в самых разных отраслях, несмотря на наличие некоторых недостатков, таких как хрупкость. Их используют в магнитно-резонансных томографах, ветрогенераторах, при очистке технических жидкостей и подъеме тяжелых грузов.

Очень интересны перспективы использования антиферромагнетиков в низкотемпературных наноструктурах для изготовления ячеек памяти, позволяющих существенно увеличивать плотность записи без нарушения состояния соседних битов.

Надо полагать, что применение магнитных свойств веществ с заданными характеристиками будет все более расширяться и обеспечит серьезные технологические прорывы в разных областях.