Онлайн калькулятор систем неравенств с двумя переменными. Система неравенств - решение. Система линейных неравенств

09.10.2019 Отопление

В статье рассмотрим решение неравенств . Расскажем доступно о том, как строиться решение неравенств , на понятных примерах!

Перед тем, как рассмотреть решение неравенств на примерах, разберемся с базовыми понятиями.

Общи сведения о неравенствах

Неравенством называется выражение, в котором функции соединяются знаками отношения >, . Неравенства бывают как числовые, так и буквенные.
Неравенства с двумя знаками отношения, называются двойными, с тремя - тройными и т.д. Например:
a(x) > b(x),
a(x) a(x) b(x),
a(x) b(x).
a(x) Неравенства, содержащие знак > или или - нестрогими.
Решением неравенства является любое значение переменой, при котором это неравенство будет верно.
"Решить неравенство " означает, что надо найти множество всех его решений. Существуют различные методы решения неравенств . Для решения неравенства пользуются числовой прямой, которая бесконечна. Например, решением неравенства x > 3 есть промежуток от 3 до +, причем число 3 не входит в этот промежуток, поэтому точка на прямой обозначается пустым кружком, т.к. неравенство строгое.
+
Ответ будет следующим: x (3; +).
Значение х=3 не входит в множество решений, поэтому скобка круглая. Знак бесконечности всегда выделяется круглой скобкой. Знак означает «принадлежание».
Рассмотрим как решать неравенства на другом примере со знаком :
x 2
-+
Значение х=2 входит в множество решений, поэтому скобка квадратная и точка на прямой обозначается закрашенным кружком.
Ответ будет следующим: x .

Давайте обобщим полученные знания.
Допустим, необходимо решить систему неравенств: $\begin{cases}f_1 (x)>f_2 (x)\\g_1 (x)>g_2 (x)\end{cases}$.
Тогда, интервал ($x_1; x_2$) – решение первого неравенства.
Интервал ($y_1; y_2$) – решение второго неравенства.
Решение системы неравенств – есть пересечение решений каждого неравенства.

Системы неравенств могут состоять из неравенств не только первого порядка, но и любых других видов неравенств.

Важные правила при решении систем неравенств.
Если одно из неравенств системы не имеет решений, то и вся система не имеет решений.
Если одно из неравенств выполняется для любых значений переменой, то решением системы будет решение другого неравенства.

Примеры.
Решить систему неравенств:$\begin{cases}x^2-16>0\\x^2-8x+12≤0 \end{cases}$
Решение.
Решим каждое неравенство по отдельности.
$x^2-16>0$.
$(x-4)(x+4)>0$.



Решим второе неравенство.
$x^2-8x+12≤0$.
$(x-6)(x-2)≤0$.

Решением неравенства будет промежуток.
Нарисуем оба промежутка на одной прямой и найдем пересечение.
Пересечение промежутков - отрезок (4; 6].
Ответ: (4;6].

Решить систему неравенств.
а) $\begin{cases}3x+3>6\\2x^2+4x+4 б) $\begin{cases}3x+3>6\\2x^2+4x+4>0\end{cases}$.

Решение.
а) Первое неравенство имеет решение х>1.
Найдем дискриминант для второго неравенства.
$D=16-4 * 2 * 4=-16$. $D Вспомним правило, когда одно из неравенств не имеет решений, то вся система не имеет решений.
Ответ: Нет решений.

Б) Первое неравенство имеет решение х>1.
Второе неравенство больше нуля при всех х. Тогда решение системы совпадает с решением первого неравенства.
Ответ: х>1.

Задачи на системы неравенств для самостоятельного решения

Решите системы неравенств:
а) $\begin{cases}4x-5>11\\2x-12 б) $\begin{cases}-3x+1>5\\3x-11 в) $\begin{cases}x^2-25 г) $\begin{cases}x^2-16x+55>0\\x^2-17x+60≥0 \end{cases}$
д) $\begin{cases}x^2+36

решение неравенства в режиме онлайн решение почти любого заданного неравенства онлайн . Математические неравенства онлайн для решения математики. Быстро найти решение неравенства в режиме онлайн . Сайт www.сайт позволяет найти решение почти любого заданного алгебраического , тригонометрического или трансцендентного неравенства онлайн . При изучении практически любого раздела математики на разных этапах приходится решать неравенства онлайн . Чтобы получить ответ сразу, а главное точный ответ, необходим ресурс, позволяющий это сделать. Благодаря сайту www.сайт решение неравенства онлайн займет несколько минут. Основное преимущество www.сайт при решении математических неравенства онлайн - это скорость и точность выдаваемого ответа. Сайт способен решать любые алгебраические неравенства онлайн , тригонометрические неравенства онлайн , трансцендентные неравенства онлайн , а также неравенства с неизвестными параметрами в режиме онлайн . Неравенства служат мощным математическим аппаратом решения практических задач. C помощью математических неравенств можно выразить факты и соотношения, которые могут показаться на первый взгляд запутанными и сложными. Неизвестные величины неравенств можно найти, сформулировав задачу на математическом языке в виде неравенств и решить полученную задачу в режиме онлайн на сайте www.сайт. Любое алгебраическое неравенство , тригонометрическое неравенство или неравенства содержащие трансцендентные функции Вы легко решите онлайн и получите точный ответ. Изучая естественные науки, неизбежно сталкиваешься с необходимостью решения неравенств . При этом ответ должен быть точным и получить его необходимо сразу в режиме онлайн . Поэтому для решения математических неравенств онлайн мы рекомендуем сайт www.сайт, который станет вашим незаменимым калькулятором для решения алгебраических неравенств онлайн , тригонометрических неравенств онлайн , а также трансцендентных неравенств онлайн или неравенств с неизвестными параметрами. Для практических задач по нахождению инетравол решений различных математических неравенств ресурса www.. Решая неравенства онлайн самостоятельно, полезно проверить полученный ответ, используя онлайн решение неравенств на сайте www.сайт. Необходимо правильно записать неравенство и моментально получите онлайн решение , после чего останется только сравнить ответ с Вашим решением неравенства. Проверка ответа займет не более минуты, достаточно решить неравенство онлайн и сравнить ответы. Это поможет Вам избежать ошибок в решении и вовремя скорректировать ответ при решении неравенств онлайн будь то алгебраическое , тригонометрическое , трансцендентное или неравенство с неизвестными параметрами.

см. также Решение задачи линейного программирования графически , Каноническая форма задач линейного программирования

Система ограничений такой задачи состоит из неравенств от двух переменных:
и целевая функция имеет вид F = C 1 x + C 2 y , которую необходимо максимизировать.

Ответим на вопрос: какие пары чисел ( x ; y ) являются решениями системы неравенств, т. е. удовлетворяют каждому из неравенств одновременно? Другими словами, что значит решить систему графически?
Предварительно необходимо понять, что является решением одного линейного неравенства с двумя неизвестными.
Решить линейное неравенство с двумя неизвестными – это значит определить все пары значений неизвестных, при которых неравенство выполняется.
Например, неравенству 3x – 5 y ≥ 42 удовлетворяют пары (x , y ) : (100, 2); (3, –10) и т. д. Задача состоит в нахождении всех таких пар.
Рассмотрим два неравенства: ax + by c , ax + by c . Прямая ax + by = c делит плоскость на две полуплоскости так, что координаты точек одной из них удовлетворяют неравенству ax + by >c , а другой неравенству ax + +by <c .
Действительно, возьмем точку с координатой x = x 0 ; тогда точка, лежащая на прямой и имеющая абсциссу x 0 , имеет ординату

Пусть для определенности a < 0, b >0, c >0. Все точки с абсциссой x 0 , лежащие выше P (например, точка М ), имеют y M >y 0 , а все точки, лежащие ниже точки P , с абсциссой x 0 , имеют y N <y 0 . Поскольку x 0 –произвольная точка, то всегда с одной стороны от прямой будут находиться точки, для которых ax + by > c , образующие полуплоскость, а с другой стороны – точки, для которых ax + by < c .

Рисунок 1

Знак неравенства в полуплоскости зависит от чисел a , b , c .
Отсюда вытекает следующий способ графического решения систем линейных неравенств от двух переменных. Для решения системы необходимо:

  1. Для каждого неравенства выписать уравнение, соответствующее данному неравенству.
  2. Построить прямые, являющиеся графиками функций, задаваемых уравнениями.
  3. Для каждой прямой определить полуплоскость, которая задается неравенством. Для этого взять произвольную точку, не лежащую на прямой, подставить ее координаты в неравенство. если неравенство верное, то полуплоскость, содержащая выбранную точку, и является решением исходного неравенства. Если неравенство неверное, то полуплоскость по другую сторону прямой является множеством решений данного неравенства.
  4. Чтобы решить систему неравенств, необходимо найти область пересечения всех полуплоскостей, являющихся решением каждого неравенства системы.

Эта область может оказаться пустой, тогда система неравенств не имеет решений, несовместна. В противном случае говорят, что система совместна.
Решений может быть конечное число и бесконечное множество. Область может представлять собой замкнутый многоугольник или же быть неограниченной.

Рассмотрим три соответствующих примера.

Пример 1. Решить графически систему:
x + y – 1 ≤ 0;
–2 x – 2y + 5 ≤ 0.

  • рассмотрим уравнения x+y–1=0 и –2x–2y+5=0 , соответствующие неравенствам;
  • построим прямые, задающиеся этими уравнениями.

Рисунок 2

Определим полуплоскости, задаваемые неравенствами. Возьмем произвольную точку, пусть (0; 0). Рассмотрим x + y– 1 0, подставим точку (0; 0): 0 + 0 – 1 ≤ 0. значит, в той полуплоскости, где лежит точка (0; 0), x + y 1 ≤ 0, т.е. полуплоскость, лежащая ниже прямой, является решением первого неравенства. Подставив эту точку (0; 0), во второе, получим: –2 ∙ 0 – 2 ∙ 0 + 5 ≤ 0, т.е. в полуплоскости, где лежит точка (0; 0), –2x – 2y + 5≥ 0, а нас спрашивали, где –2x – 2y + 5 ≤ 0, следовательно, в другой полуплоскости – в той, что выше прямой.
Найдем пересечение этих двух полуплоскостей. Прямые параллельны, поэтому плоскости нигде не пересекаются, значит система данных неравенств решений не имеет, несовместна.

Пример 2. Найти графически решения системы неравенств:

Рисунок 3
1. Выпишем уравнения, соответствующие неравенствам, и построим прямые.
x + 2y – 2 = 0

x 2 0
y 0 1

y x – 1 = 0
x 0 2
y 1 3

y + 2 = 0;
y = –2.
2. Выбрав точку (0; 0), определим знаки неравенств в полуплоскостях:
0 + 2 ∙ 0 – 2 ≤ 0, т.е. x + 2y – 2 ≤ 0 в полуплоскости ниже прямой;
0 – 0 – 1 ≤ 0, т.е. y x – 1 ≤ 0 в полуплоскости ниже прямой;
0 + 2 =2 ≥ 0, т.е. y + 2 ≥ 0 в полуплоскости выше прямой.
3. Пересечением этих трех полуплоскостей будет являться область, являющаяся треугольником. Нетрудно найти вершины области, как точки пересечения соответствующих прямых


Таким образом, А (–3; –2), В (0; 1), С (6; –2).

Рассмотрим еще один пример, в котором получившаяся область решения системы не ограничена.


В этой статье собрана начальная информация о системах неравенств. Здесь дано определение системы неравенств и определение решения системы неравенств. А также перечислены основные виды систем, с которыми наиболее часто приходится работать на уроках алгебры в школе, и приведены примеры.

Навигация по странице.

Что такое система неравенств?

Системы неравенств удобно определить аналогично тому, как мы вводили определение системы уравнений , то есть, по виду записи и смыслу, вложенному в нее.

Определение.

Система неравенств – это запись, представляющая собой некоторое число записанных друг под другом неравенств, объединенных слева фигурной скобкой, и обозначающая множество всех решений, являющихся одновременно решениями каждого неравенства системы.

Приведем пример системы неравенств. Возьмем два произвольных , например, 2·x−3>0 и 5−x≥4·x−11 , запишем их одно под другим
2·x−3>0 ,
5−x≥4·x−11
и объединим знаком системы – фигурной скобкой, в результате получим систему неравенств такого вида:

Аналогично дается представление о системах неравенств в школьных учебниках. Стоит отметить, что в них определения даются более узко: для неравенств с одной переменной или с двумя переменными .

Основные виды систем неравенств

Понятно, что можно составить бесконечно много различных систем неравенств. Чтобы не заблудиться в этом многообразии, их целесообразно рассматривать по группам, имеющим свои отличительные признаки. Все системы неравенств можно разбить на группы по следующим критериям:

  • по числу неравенств в системе;
  • по числу переменных, участвующих в записи;
  • по виду самих неравенств.

По числу неравенств, входящих в запись, различают системы двух, трех, четырех и т.д. неравенств. В предыдущем пункте мы привели пример системы , которая является системой двух неравенств. Покажем еще пример системы четырех неравенств .

Отдельно скажем, что нет смысла говорить о системе одного неравенства, в этом случае по сути речь идет о самом неравенстве, а не о системе.

Если смотреть на число переменных, то имеют место системы неравенств с одной, двумя, тремя и т.д. переменными (или, как еще говорят, неизвестными). Посмотрите на последнюю систему неравенств, записанную двумя абзацами выше. Это система с тремя переменными x , y и z . Обратите внимание, что ее два первых неравенства содержат не все три переменные, а лишь по одной из них. В контексте этой системы их стоит понимать как неравенства с тремя переменными вида x+0·y+0·z≥−2 и 0·x+y+0·z≤5 соответственно. Заметим, что в школе основное внимание уделяется неравенствам с одной переменной.

Осталось обговорить, какие виды неравенств участвуют в записи систем. В школе в основном рассматривают системы двух неравенств (реже – трех, еще реже - четырех и более) с одной или двумя переменными, причем сами неравенства обычно являются целыми неравенствами первой или второй степени (реже – более высоких степеней или дробно рациональными). Но не удивляйтесь, если в материалах по подготовке к ОГЭ столкнетесь с системами неравенств, содержащими иррациональные, логарифмические, показательные и другие неравенства. В качестве примера приведем систему неравенств , она взята из .

Что называется решением системы неравенств?

Введем еще одно определение, связанное с системами неравенств, - определение решения системы неравенств :

Определение.

Решением системы неравенств с одной переменной называется такое значение переменной, обращающее каждое из неравенств системы в верное , другими словами, являющееся решением каждого неравенства системы.

Поясним на примере. Возьмем систему двух неравенств с одной переменной . Возьмем значение переменной x , равное 8 , оно является решением нашей системы неравенств по определению, так как его подстановка в неравенства системы дает два верных числовых неравенства 8>7 и 2−3·8≤0 . Напротив, единица не является решением системы, так как при ее подстановке вместо переменной x первое неравенство обратится в неверное числовое неравенство 1>7 .

Аналогично можно ввести определение решения системы неравенств с двумя, тремя и большим числом переменных:

Определение.

Решением системы неравенств с двумя, тремя и т.д. переменными называется пара, тройка и т.д. значений этих переменных, которая одновременно является решением каждого неравенства системы, то есть, обращает каждое неравенство системы в верное числовое неравенство.

К примеру, пара значений x=1 , y=2 или в другой записи (1, 2) является решением системы неравенств с двумя переменными , так как 1+2<7 и 1−2<0 - верные числовые неравенства. А пара (3,5, 3) не является решением этой системы, так как второе неравенство при этих значениях переменных дает неверное числовое неравенство 3,5−3<0 .

Системы неравенств могут не иметь решений, могут иметь конечное число решений, а могут иметь и бесконечно много решений. Часто говорят о множестве решений системы неравенств. Когда система не имеет решений, то имеет место пустое множество ее решений. Когда решений конечное число, то множество решений содержит конечное число элементов, а когда решений бесконечно много, то и множество решений состоит из бесконечного числа элементов.

В некоторых источниках вводятся определения частного и общего решения системы неравенств, как, например, в учебниках Мордковича . Под частным решением системы неравенств понимают ее одно отдельно взятое решение. В свою очередь общее решение системы неравенств - это все ее частные решения. Однако в этих терминах есть смысл лишь тогда, когда требуется особо подчеркнуть, о каком решении идет речь, но обычно это и так понятно из контекста, поэтому намного чаще говорят просто «решение системы неравенств».

Из введенных в этой статье определений системы неравенств и ее решений следует, что решение системы неравенств представляет собой пересечение множеств решений всех неравенств этой системы.

Список литературы.

  1. Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  2. Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
  3. Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.
  4. Мордкович А. Г. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. - 2-е изд., стер. - М.: Мнемозина, 2008. - 287 с.: ил. ISBN 978-5-346-01027-2.
  5. ЕГЭ -2013. Математика: типовые экзаменационные варианты: 30 вариантов / под ред. А. Л. Семенова, И. В. Ященко. – М.: Издательство «Национальное образование», 2012. – 192 с. – (ЕГЭ-2013. ФИПИ – школе).