Устойчивость к ультрафиолетовому излучению. Современные проблемы науки и образования. В чем же заключаются преимущества печати ультрафиолетовыми чернилами

03.03.2020 Отопление

Акрил в архитектуре

Из акрилового стекла создаются красивейшие архитектурные сооружения - прозрачная кровля, фасады, дорожные ограждения , навесы, козырьки, беседки. Все эти конструкции эксплуатируются на открытом воздухе под постоянным воздействием солнечного излучения. Возникает резонный вопрос: смогут ли акриловые сооружения выдержать «натиск» лучей палящего солнца, сохранив при этом отличные эксплуатационные характеристики, блеск, прозрачность? Спешим вас порадовать: поводов для беспокойства нет. Акриловые конструкции могут безопасно эксплуатироваться на улице под постоянным воздействием ультрафиолетового излучения даже в жарких странах.

Сравнение акрила с другими пластиками по устойчивости к УФ-излучению

Попробуем сравнить акрил с другими пластиками. Сегодня для изготовления фасадного, кровельного остекления и оградительных конструкций используется большое количество различных прозрачных пластиков. На первый взгляд, они ничем не отличаются от акрила. Но синтетические материалы, похожие на акрил по своим визуальным характеристикам, теряют свою внешнюю привлекательность уже через несколько лет эксплуатации под прямыми солнечными лучами. Никакие дополнительные покрытия и пленки не способны защитить некачественный пластик от ультрафиолета на долгий срок. Материал остается чувствительным к УФ-лучам, а о надежности всевозможных поверхностных покрытий говорить, увы, не приходится. Защита в виде пленок и лаков со временем трескается, отслаивается. Не удивительно, что гарантия от пожелтения таких материалов не превышает нескольких лет. Акриловое стекло марки Plexiglas проявляет себя совершенно иначе. Материал обладает естественными защитными свойствами, поэтому не теряет своих отличных характеристик на протяжении, как минимум, трех десятков лет.

Как работает технология защиты акрила от солнечных лучей?

Устойчивость Plexiglas к УФ-излучению обеспечивается уникальной технологией комплексной защиты Naturally UV Stable. Защита формируется не только на поверхности, но и по всей структуре материала на молекулярном уровне. Производитель оргстекла Plexiglas предоставляет 30-летнюю гарантию на отсутствие пожелтения и помутнения поверхности при постоянной эксплуатации на улице. Такая гарантия распространяется на прозрачные бесцветные листы, трубы, блоки, стержни, гофрированные и ребристые плиты из акрилового стекла марки Plexiglas. Навесы, кровельные покрытия, прозрачные акриловые фасады, беседки, ограждения и другие изделия из оргстекла не приобретают неприятного желтого оттенка.

На схеме показаны изменения индекса светопропускания акрила в течение гарантийного срока эксплуатации в различных климатических зонах. Мы видим, что светопропускание материала незначительно снижается, но это минимальные, незаметные невооруженным глазом изменения. Снижение индекса светопропускания на несколько процентов можно определить лишь с помощью специального оборудования. Визуально акрил остается первозданно прозрачным и блестящим.

На графике можно проследить динамику изменения светопроницаемости акрила в сравнении с обычным стеклом и другими пластиками. Во-первых, светопроницаемость акрила в исходном состоянии выше. Это самый прозрачный материал из известных на сегодняшний день пластиков. Со временем разница становится более заметной: некачественные материалы начинают темнеть, тускнеть, а светопроницаемость акрила остается на прежнем уровне. Ни один из известных пластиков, кроме акрила, не может пропускать 90% света через тридцать лет эксплуатации под солнцем. Именно поэтому акрилу отдают предпочтение современные дизайнеры и архитекторы при создании своих лучших проектов.


Упоминая о светопропускании, мы говорим о безопасном спектре ультрафиолетовых лучей. Опасную часть спектра солнечного излучения акриловое стекло задерживает. Например, в доме под акриловой крышей или в самолете с акриловыми иллюминаторами люди находятся под надежной зашитой остекления. Для пояснения разберемся в природе ультрафиолетового излучения. Спектр делится на коротковолновое, средневолновое и длинноволновое излучение. Каждый тип излучения оказывает различное воздействие на окружающий мир. Наиболее высокоэнергетическое излучение с короткой длиной волны, поглощаемое озоновым слоем планеты, способно повредить молекулы ДНК. Средневолновое - при длительном воздействии вызывает ожоги кожи и угнетает основные функции организма. Самое безопасное и даже полезное - длинноволновое излучение. До нашей планеты добирается лишь часть опасного средневолнового излучения и весь длинноволновой спектр. Акрил пропускает полезный спектр УФ-излучения, задерживая опасные лучи. В этом заключается очень важное преимущество материала. Остекление дома позволяет сохранить максимум света в помещении, оберегая людей от негативного воздействия ультрафиолета.

1

Получены композиционные материалы на основе полипропилена, устойчивые к УФ-излучению. Для оценки степени фотодеградации полипропилена и композитов на его основе главным инструментом являлась ИК-спектроскопия. При деградации полимера происходит разрыв химических связей и окисление материала. Данные процессы находят свое отражение на ИК-спектрах. Также о развитии процессов фотодеградации полимера можно судить по изменению структуры поверхности, подвергшейся облучению УФ. Это отражается на изменении краевого угла смачивания. Методами ИК-спектроскопии и измерения краевого угла смачивания исследовался полипропилен, стабилизированный различными УФ-абсорберами. В качестве наполнителей для полимерной матрицы использовались нитрид бора, многостенные углеродные нанотрубки и углеродные волокна. Получены и проанализированы ИК-спектры поглощения полипропилена и композитов на его основе. На основании полученных данных определены концентрации УФ-фильтров в полимерной матрице, необходимые для защиты материала от фотодеградации. В результате проведенных исследований установлено, что использованные наполнители значительно снижают деградацию поверхности и кристаллической структуры композитов.

полипропилен

УФ-излучение

нанотрубки

нитрид бора

1. Смит А. Л. Прикладная ИК-спектроскопия. Основы, техника, аналитическое применение. – М.: Мир, 1982.

2. Bertin D., M. Leblanc, S. R. A. Marque, D. Siri. Polypropylene degradation: Theoretical and experimental investigations// Polymer Degradation and Stability. – 2010. – V. 95, I.5. – P. 782-791.

3. Guadagno L., Naddeo C., Raimondo M., Gorrasi G., Vittoria V. Effect of carbon nanotubes on the photo-oxidative durability of syndiotactic polypropylene // Polymer Degradation and Stability. – 2010. – V.95, I. 9. – P. 1614-1626.

4. Horrocks A. R., Mwila J., Miraftab M., Liu M., Chohan S. S. The influence of carbon black on properties of orientated polypropylene 2. Thermal and photodegradation // Polymer Degradation and Stability. – 1999. – V. 65, I.1. – P. 25-36.

5. Jia H., Wang H., Chen W. The combination effect of hindered amine light stabilizers with UV absorbers on the radiation resistance of polypropylene // Radiation Physics and Chemistry. – 2007. – V.76, I. 7. – P. 1179-1188.

6. Kaczmarek H., Ołdak D., Malanowski P., Chaberska H. Effect of short wavelength UV-irradiation on ageing of polypropylene / cellulose compositions // Polymer Degradation and Stability. – 2005. – V.88, I.2. – P. 189-198.

7. Kotek J., Kelnar I., Baldrian J., Raab M. Structural transformations of isotactic polypropylene induced by heating and UV light // European Polymer Journal. – 2004. – V.40, I.12. – P. 2731-2738.

1. Введение

Полипропилен применяется во многих областях: в производстве плёнок (особенно упаковочных), тары, труб, деталей технической аппаратуры, в качестве электроизоляционного материала, в строительстве и так далее. Однако при воздействии УФ-излучения полипропилен теряет свои эксплуатационные характеристики вследствие развития процессов фотодеградации . Поэтому для стабилизации полимера применяются различные УФ-абсорберы (УФ-фильтры) - как органические , так и неорганические: дисперсные металлические, керамические частицы, углеродные нанотрубки и волокна .

Для оценки степени фотодеградации полипропилена и композитов на его основе главным инструментом является ИК-спектроскопия. При деградации полимера происходит разрыв химических связей и окисление материала. Данные процессы находят свое отражение на
ИК-спектрах. По числу и положению пиков в ИК-спектрах поглощения можно судить о природе вещества (качественный анализ), а по интенсивности полос поглощения - о количестве вещества (количественный анализ) , а, следовательно, и оценить степень деградации материала.

Также о развитии процессов фотодеградации полимера можно судить по изменению структуры поверхности, подвергшейся облучению УФ. Это отражается на изменении краевого угла смачивания.

В данной работе методами ИК-спектроскопии и измерения краевого угла смачивания исследовался полипропилен, стабилизированный различными УФ-абсорберами.

2. Материалы и методика эксперимента

В качестве исходных материалов и наполнителей были использованы: полипропилен, низковязкий (ТУ 214535465768); многослойные углеродные нанотрубки диаметром не более 30 нм и длиной не более 5 мм; высокомодульное углеродное волоконо, марки ВМН-4; гексагональный нитрид бора.

Образцы с различной массовой долей наполнителя в полимерной матрице были получены из исходных материалов методом экструзионного перемешивания.

В качестве метода для исследования изменения молекулярной структуры полимерных композитов под действием ультрафиолетового излучения использовалась ИК-Фурье спектрометрия. Съемка спектров проводилась на спектрометре Thermo Nicolet 380 с приставкой для реализации метода нарушенного полного внутреннего отражения (НПВО) Smart iTR с алмазным кристаллом. Съемка велась с разрешением 4 см-1, анализируемая область находилась в диапазоне 4000-650 см -1. Каждый спектр получен путем усреднения 32 проходов зеркала спектрометра. Спектр сравнения снимался перед съемкой каждого образца.

Для исследования изменения поверхности экспериментальных полимерных композитов под действием ультрафиолетового излучения использовался метод определения краевого угла смачивания дистиллированной водой. Измерения краевого угла смачивания проводятся при помощи системы анализа формы капли KRÜSS EasyDrop DSA20. Для расчета краевого угла смачивания использовался метод Юнга - Лапласа. В данном методе оценивается полный контур капли; при подборе учитывается не только межфазные взаимодействия, которые определяют контур капли, но и то, что капля не разрушается за счет веса жидкости. После успешного подбора уравнения Юнга - Лапласа определяется краевой угол смачивания как наклон касательной в точке касания трех фаз.

3. Результаты и их обсуждение

3.1. Результаты исследований изменения молекулярной структуры полимерных композитов

На спектре полипропилена без наполнителя (рисунок 1) присутствуют все характерные для данного полимера линии. В первую очередь это линии колебаний атомов водорода в функциональных группах CH3 и CH2. Линии в области волновых чисел 2498 см-1 и 2866 см-1 отвечают за асимметричные и симметричные валентные колебания метильной группы (CH3), а линии 1450 см-1 и 1375 см-1 в свою очередь обусловлены изгибными симметричными и асимметричными колебаниями той же группы. Линии 2916 см-1 и 2837 см-1 относят к линиям валентных колебаний метиленовых групп (CH2). Полосы на волновых числах 1116 см-1,
998 см-1, 974 см-1, 900 см-1, 841 см-1 и 809 см-1 принято относить к полосам регулярности, то есть к линиям, обусловленным областями регулярности полимера, также их иногда называют полосами кристалличности. Стоит отметить присутствие линии малой интенсивности в области 1735 см-1, которую следует относить к колебаниям связи C=O, что может быть связано с незначительным окислением полипропилена в процессе прессования. На спектре также присутствуют полосы, отвечающие за образование двойных связей C=C
(1650-1600 см-1), возникших после облучения образца УФ-излучением. Ко всему прочему, именно этот образец характеризуются максимальной интенсивностью линии C=O.

Рисунок 1. ИК спектры полипропилена после испытаний устойчивости к ультрафиолетовому излучению

В результате воздействия УФ-излучения на композиты, наполненные нитридом бора, образуются связи C=O (1735-1710 см-1) различной природы (альдегидной, кетонной, эфирной). На спектрах облученных УФ-излучением образцов чистого полипропилена и полипропилена, содержащего 40 % и 25 % нитрида бора, присутствуют полосы, как правило, отвечающие за образование двойных связей C=C (1650-1600 см-1). Полосы регулярности (кристалличности) в области волновых чисел 1300-900 см-1 на образцах полимерных композитов, подвергнутых УФ-облучению, заметно уширены, что говорит о частичной деградации кристаллической структуры полипропилена. Однако с увеличением степени наполнения полимерных композиционных материалов гексагональным нитридом бором деградация кристаллической структуры полипропилена уменьшается. УФ-воздействие также привело к повышению гидрофильности поверхности образцов, что выражается в присутствии широкой линии гидроксогруппы в области 3000 см-1.

Рисунок 2. ИК спектры полимерного композита на основе полипропилена с 25 % (масс.) нитрида бора гексагонального после испытаний устойчивости к ультрафиолетовому излучению

Спектры же полипропилена, наполненного 20 % (масс.) смесью углеродных волокон и нанотрубок до и после испытаний, практически не отличаются друг от друга, в первую очередь это вызвано искажением спектра в виду сильного поглощения ИК-излучения углеродной составляющей материала.

На основании полученных данных, можно судить о наличии в образцах композитов на основе полипропилена, углеродного волокна ВМН-4 и углеродных нанотрубок малого количества связей C=O, в виду присутствия пика в области 1730 см-1, однако, достоверно судить о количестве данных связей в образцах не представляется возможным в связи с искажениями спектров.

3.2. Результаты исследования изменения поверхности полимерных композитов

В таблице 1 представлены результаты исследования изменения поверхности экспериментальных образцов полимерных композитов, наполненных нитридом бора гексагональным. Анализ результатов позволяет сделать вывод о том, что наполнение полипропилена нитридом бора гексагональным повышает устойчивость поверхности полимерных композитов к ультрафиолетовому излучению. Увеличение степени наполнения приводит к меньшей деградации поверхности, проявляющейся в увеличении гидрофильности, что хорошо согласуется с результатами исследования изменения молекулярной структуры экспериментальных образцов полимерных композитов.

Таблица 1. Результаты изменения краевого угла смачивания поверхности полимерных композитов, наполненных нитридом бором гексагональным вследствие испытания устойчивости к ультрафиолетовому излучению

Степень наполнения BN

Краевой угол смачивания, гр

До испытания

После испытания

Анализ результатов исследования изменения поверхности экспериментальных образцов полимерных композитов, наполненных смесью углеродных волокон и нанотрубок (табл. 2), позволяет сделать вывод о том, что наполнение полипропилена углеродными материалами делает данные полимерные композиты устойчивыми к ультрафиолетовому излучению. Данный факт объясняется тем, что углеродные материалы активно поглощают ультрафиолетовое излучение.

Таблица 2. Результаты изменения краевого угла смачивания поверхности полимерных композитов, наполненных углеродным волокном и нанотрубками вследствие испытания устойчивости к ультрафиолетовому излучению

Степень наполнения УВ+УНТ

Краевой угол смачивания, гр

До испытания

После испытания

4. Заключение

Согласно результатам исследования устойчивости композитов на основе полипропилена к ультрафиолетовому излучению добавление в полимер гексагонального нитрида бора значительно снижает деградацию поверхности и кристаллической структуры композитов. Однако углеродные материалы активно поглощают ультрафиолетовое излучение, обеспечивая тем самым высокую устойчивость композитов на основе полимеров и углеродных волокон и нанотрубок к ультрафиолетовому излучению.

Работа выполнена в рамках федеральной целевой программы «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007-2013 годы», Государственный контракт от 08 июля 2011 г. № 16.516.11.6099.

Рецензенты:

Серов Г. В., доктор технических наук, профессор кафедры функциональных наносистем и высокотемпературных материалов НИТУ "МИСиС", г. Москва.

Кондаков С. Э., доктор технических наук, старший научный сотрудник кафедры функциональных наносистем и высокотемпературных материалов НИТУ "МИСиС", г. Москва.

Библиографическая ссылка

Кузнецов Д.В., Ильиных И.А., Чердынцев В.В., Муратов Д.С., Шатрова Н.В., Бурмистров И.Н. ИССЛЕДОВАНИЕ УСТОЙЧИВОСТИ ПОЛИМЕРНЫХ КОМПОЗИТОВ НА ОСНОВЕ ПОЛИПРОПИЛЕНА К УЛЬТРАФИОЛЕТОВОМУ ИЗЛУЧЕНИЮ // Современные проблемы науки и образования. – 2012. – № 6.;
URL: http://science-education.ru/ru/article/view?id=7503 (дата обращения: 01.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Собрав значительную коллекцию темноцветных гифомицетов, выделенных из разных мест обитания, мы приступили к изучению отношения природных изолятов грибов к УФ-излучению. Такое исследование позволило выявить различия в УФ-устойчивости среди широко распространенных в почве видов и родов семейства Dematiaceae, определить распределение этого признака в пределах каждого биоценоза, его таксономическую и экологическую значимость.

Нами изучена устойчивость к УФ-лучам (254 нм, интенсивность дозы 3,2 Дж/м 2) 291 культуры грибов, выделенных из луговых и пойменно-луговых (21 вид 11 родов), высокогорных (25 видов 18 родов) и засоленных (30 видов 19 родов) почв. При изучении УФ-устойчивости культур Dematiaceae, выделенных из равнинных засоленных почв юга УССР, исходили из предположения, что с нарастанием неблагоприятных условий существования в связи с засоленностью почвы в ней будет накапливаться большее чем в других почвах количество устойчивых видов темноцветных гифомицетов. В ряде случаев оказалось невозможным определить УФ-устойчивость ввиду утраты или спорадичности спороношений у видов.

Мы изучали природные изоляты темноцветных гифомицетов, в связи с этим каждая выборка характеризовалась неодинаковым количеством культур. Для некоторых редко встречающихся видов величина выборки не позволила провести соответствующую статистическую обработку.

Широко распространенный и часто встречающийся род Cladosporium представлен наибольшим количеством штаммов (131), в отличие от родов Diplorhinotrichum, Haplographium, Phialophora и др., выделенных только в единичных случаях.

Изученные грибы мы условно разделили на высокоустойчивые, устойчивые, чувствительные и высокочувствительные. К высокоустойчивым и устойчивым отнесли такие, выживаемость которых после 2-часовой экспозиции УФ-лучами составила более 10% и от 1 до 10% соответственно. Виды, выживаемость которых составляла от 0,01 до 1% и от 0,01% и ниже, мы отнесли к чувствительным и высокочувствительным.

Выявлены большие колебания в УФ-устойчивости изученных темноцветных гифомицетов - от 40% и более до 0,001%, т. е. в пределах пяти порядков. Эти колебания несколько меньшие на уровне родов (2-3 порядка) и видов (1-2 порядка), что согласуется с результатами, полученными, на бактериях и культурах тканей растений и животных (Самойлова, 1967; Жестяников, 1968).

Из 54 изученных видов семейства Dematiaceae высокоустойчивые к длительному УФ-облучению 254 нм Helminthosporium turcicum, Hormiscium stilbosporum, Curvularia tetramera, C. lunata, Dendryphium macrosporioides, Heterosporium sp., Alternaria tenuis, значительная часть штаммов Stemphylium sarciniforme. Все они отличаются интенсивно пигментированными, ригидными клеточными стенками и, за исключением Dendryphium macrosporioides, Heterosporium sp. и Hormiscium stilbosporum, относятся к группам Didimosporae и Phragmosporae семейства Dematiaceae, характеризующимся крупными многоклеточными конидиями.

Значительно большее число видов устойчивы к УФ-лучам. К ним относятся виды родов Alternaria, Stemphylium, Curvularia, Helminthosporium, Bispora, Dendryphion, Rhinocladium, Chrysosporium, Trichocladium, Stachybotrys, Humicola. Отличительнымиособенностями этой группы, также как и предыдущей, являются крупные конидии с ригидными, интенсивно пигментированными стенками. Среди них также значительное место занимали грибы группы Didimosporae и Phragmosporae: Curvularia, Helminthosporium, Alternaria, Stemphylium, Dendryphion.

К УФ-чувствительным отнесены 23 вида темноцветных гифомицетов: Oidiodendron, Scolecobasidium, Cladosporium, Trichosporium, Haplographium, Periconia, Humicola fusco-atra, Scytalidium sp., Alternaria dianthicola, Monodyctis sp., Peyronella sp., Curvularia pallescnes и др. Обращает на себя внимание, что виды A. dianthicola и С. pallescens, конидии которых менее пигментированы, чувствительны к УФ-лучам, хотя остальные виды этих родов устойчивы и даже высокоустойчивы.

Согласно принятому делению, виды широко распространенного и представленного в наших исследованиях наибольшим количеством штаммов рода Cladosporium отнесены к чувствительным (С. linicola, С. hordei, С. macrocarpum, С. atroseptum. С. brevi-compactum var. tabacinum) и высокочувствительным (С. elegantulum, С. transchelii, С. transchelii var. semenicola, С. griseo-olivaceum).

Виды рода Cladosporium, принадлежащие к первой группе, отличались достаточно плотными, интенсивно пигментированными, шероховатыми клеточными оболочками, в отличие от второй группы видов, клеточные стенки которых тоньше и менее пигментированы. Чувствительные виды, выживаемость которых после облучения дозой 408 Дж/м 2 составляла менее 0,01 %, - Diplorhinotrichum sp., Phialophora sp., Chloridium apiculatum и др. Крупноспоровые темноцветные гифомицеты в этой группе отсутствовали. Высокочувствительные к УФ-облучению виды имели мелкие, слабо пигментированные или почти бесцветные конидии.

У некоторых видов Dematiaceae была изучена морфология конидий, образовавшихся после облучения дозой 800 Дж/м 2 . Конидии Cladosporium transchelii, С. hordei, С. elegantulum и С. brevi-compactum, образовавшиеся после облучения, как правило, крупнее чем у необлученных видов. Особенно четко эта тенденция проявлялась на базальных конидиях. Заметные изменения в морфологии конидий наблюдались также у крупноспоровых, устойчивых к УФ-лучам видов Curvularia geniculata, Alternaria alternata, Trichocladium opacum, Helminthosporium turcicum, они обнаруживались только после облучения большими дозами УФ-лучей порядка 10 3 Дж/м 2 . При этом конидии Curvularia geniculata заметно удлинялись и становились почти прямыми, в конидиях Alternaria alternata уменьшалось количество продольных перегородок вплоть до полного исчезновения, а сами они становились крупнее контрольных. Напротив, конидии Н. turcicum становились мельче, количество перегородок в них уменьшалось, иногда перегородки становились изогнутыми. В конидиях Trichocladium opacum наблюдалось появление отдельных, необычно вздутых клеток. Такие изменения в морфологии свидетельствуют о значительных нарушениях процессов роста и деления в облученных грибах.

Изучение природных изолятов грибов семейства Dematiaceae подтвердило определенную зависимость УФ-устойчивости от величины конидий и пигментации их оболочек. Как правило, крупные конидии более устойчивы, чем мелкие. Следует отметить, что выбранный нами показатель - выживаемость - меланинсодержащих грибов после облучения дозой 408 Дж/м 2 свидетельствует о высокой устойчивости группы грибов в целом, превосходящей таковую уникальных по этому признаку микроорганизмов Micrococcus radiodurans (Moseley, Copland, 1975) и Micrococcus radiophilus (Lewis, Kumita, 1972). Совершенно очевидно, что природа такого явления нуждается в дальнейшем изучении с привлечением высокоустойчивых и устойчивых по этому признаку видов семейства Dematiaceae.

Мы изучали распределение признака УФ-резистентности у темноцветных грибов, выделенных из пойменно-луговых, засоленных и высокогорных почв, которое изображали графически. Полученные кривые напоминали кривые нормального распределения (Лакин, 1973). Выживаемость большинства (41,1 и 45,8%) культур, выделенных соответственно из луговых и засоленных почв Украины, составляла после дозы 408 Дж/м 2 (2-часовая экспозиция) 0,02-0,19%, и устойчивость к этому фактору распределялась в пределах 6 порядков. Следовательно, предположение о повышенной устойчивости к УФ-облучению темноцветных гифомицетов из засоленных почв не подтвердилось.

Заметно отличалась от описанного выше УФ-устойчивость высокогорных видов семейства Dematiaceae, что нашло отражение в изменении положения пика кривой и размах распределения.

Для 34,4% культур выживаемость составляла 0,2-1,9 %. Выживаемость 39,7% изолятов превышала 2%, т. е. кривая распределения признака УФ-устойчивости смещена в сторону повышенной устойчивости к УФ-облучению. Размах распределения по этому свойству не превышал четырех порядков.

В связи с выявленными различиями в распределении признака УФ-устойчивости у равнинных и высокогорных видов и родов семейства Dematiaceae, представлялось целесообразным проверить за счет чего они происходят: вследствие преимущественной встречаемости высокоустойчивых и устойчивых к УФ-лучам видов темноцветных гифомицетов в горных почвах или имеет место повышенная устойчивость к УФ-радиации высокогорных штаммов одного и того же вида или рода по сравнению с равнинными. Для доказательства последнего провели сравнение культур семейства Dematiaceae, выделенных на поверхности равнинных и высокогорных почв, а также из поверхностных (0-2 см) и глубоких (30-35 см) горизонтов равнинных луговых почв. Очевидно, что такие грибы находятся в крайне неравноценных условиях. Использованные нами выборки позволили проанализировать по признаку УФ-устойчивости 5 распространенных родов семейства Dematiaceae, выделенных на поверхности равнинных и высокогорных почв. Только штаммы, выделенные из высокогорных почв, видов рода Cladosporium и Alternaria достоверно более устойчивы, чем штаммы, выделенные из равнинных почв. УФ-устойчивость штаммов, выделенных из равнинных почв, напротив, была достоверно выше, чем высокогорных. Следовательно, различия по отношению к УФ-лучам в микофлоре районов с повышенной инсоляцией (высокогорные почвы) определяются не только преимущественной встречаемостью устойчивых родов и видов Dematiaceae, но и возможно адаптацией их к таким условиям. Последнее положение, очевидно, имеет частное значение.

Сравнение УФ-устойчивости культур наиболее распространенных родов темноцветных гифомицетов, выделенных из поверхностных, подвергающихся воздействию света, и глубоких почвенных горизонтов, показало отсутствие статистически достоверных различий между ними. Диапазон изменения признака устойчивости к УФ-лучам у природных изолятов широко распространенных видов Dematiaceae был большей частью одинаковым у равнинных и высокогорных изолятов и не превышал двух порядков. Широкая изменчивость по этому признаку на уровне вида обеспечивает возможность выживания устойчивой части видовой популяции в экологически неблагоприятных по данному фактору условиях.

Проведенные исследования подтвердили выявленную в эксперименте исключительно высокую УФ-устойчивость видов Stemphylium ilicis, S. sarciniforme, Dicoccum asperum, Humicola grisea, Curvularia geniculata, Helminthosporium bondarzewi, у которых после дозы облучения порядка 1,2-1,5 ∙ 10 3 Дж/м 2 до 8-50% конидий оставались живыми.

Следующей задачей явилось изучение устойчивости некоторых видов семейства Dematiaceae к биологически Экстремальным дозам УФ-излучения и искусственному солнечному свету (ИСС) высокой интенсивности (Жданова и др. 1978, 1981).

Облучали монослой сухих конидий на желатиновой подложке по методу Ли, модифицированному нами (Жданова, Василевская, 1981), и получили сравнимые, статистически достоверные результаты. Источником УФ-излучения служила лампа ДРШ - 1000 сo светофильтром УФС-1, пропускающим УФ-лучи 200-400 нм. Интенсивность светового потока составляла 200 Дж/м 2 ∙ с. Оказалось, что Stemphylium ilicis, Cladosporium transchelii и особенно его мутант Ч-1 высоко устойчивы к этому воздействию.

Так, выживаемость S. ilicis после дозы 1 ∙ 10 5 Дж/м 2 составила 5%. 5%-ная выживаемость для мутанта Ч-1, С. transchelii, мутантов К-1 и БМ наблюдалась после доз 7,0 ∙ 10 4 ; 2,6 ∙ 10 4 ; 1,3 ∙ 10 4 и 220 Дж/м 2 соответственно. Графически гибель облученных темноокрашенных конидий описывалась сложной экспоненциальной кривой с обширным плато, в отличие от выживаемости мутанта БМ, которая подчинялась экспоненциальной зависимости.

Кроме того, мы испытали устойчивость меланинсодержащих грибов к ИСС высокой интенсивности. Источником излучения служил осветитель солнечный (ОС - 78) на основе ксеноновой лампы ДКсР-3000, обеспечивающий излучение в диапазоне длин волн 200-2500 нм со спектральным распределением энергии, близким к солнечному. При этом доля энергии в УФ-области составляла 10-12% общего потока излучения. Облучение проводили в воздухе или в условиях вакуума (106,4 мк Па). Интенсивность излучения в воздухе составляла 700 Дж/м 2 ∙ с и в вакууме - 1400 Дж/м 2 ∙ с (0,5 и 1 солнечная доза соответственно). Одна солнечная доза (солнечная постоянная) - это величина полного потока солнечного излучения за пределами земной атмосферы на среднем расстоянии Земля - Солнце, падающего на 1 см 2 поверхности в 1 с. Измерение удельной облученности производили по специальной методике на позиции образца с помощью люксметра 10-16 с дополнительным нейтральным светофильтром. Каждый штамм облучали не менее чем 8-15 последовательно увеличивающимися дозами излучения. Время облучения варьировали от 1 мин до 12 суток. Об устойчивости к ИСС судили по выживаемости конидий грибов (количество образовавшихся макроколоний) по отношению к необлученному контролю, принятому за 100%. Всего испытано 14 видов 12 родов семейства Dematiaceae, из них 5 видов изучено более подробно.

Устойчивость культур С. transchelii и его мутантов к ИСС зависела от степени их пигментации. Графически она описывалась сложной экспоненциальной кривой с обширным плато резистентности. Значение ЛД 99,99 при облучении в воздухе для мутанта Ч-1 составило 5,5 ∙ 10 7 Дж/м 2 , исходной культуры С. transchelii - 1,5 ∙ 10 7 Дж/м 2 , светлоокрашенных мутантов К-1 и БМ - 7,5 ∙ 10 6 и 8,4 ∙ 10 5 Дж/м 2 соответственно. Облучение мутанта Ч-1 в условиях вакуума оказалось более благоприятным: заметно увеличивалась устойчивость гриба (ЛД 99,99 - 2,4 ∙ 10 8 Дж/м 2), изменился тип дозной кривой выживаемости (многокомпонентная кривая). Для остальных штаммов такое облучение было более губительным.

При сравнении устойчивости к УФ-лучам и ИСС высокой интенсивности культур С. transchelii и его мутантов, установлено много общего, несмотря на то что воздействие ИСС изучали на «сухих» конидиях, а УФ-лучами облучали водную суспензию спор. В обоих случаях обнаружена прямая зависимость устойчивости грибов от содержания ПЦ меланинового пигмента в клеточной оболочке. Сопоставление этих свойств свидетельствует об участии пигмента в устойчивости грибов к ИСС. Предложенный в дальнейшем механизм фотозащитного действия меланинового пигмента позволяет объяснить продолжительную устойчивость меланинсодержащих грибов к тотальным дозам УФ-лучей и ИСС.

Следующим этапом нашей работы явилось изыскание более устойчивых к этому фактору культур меланинсодержащих грибов. Ими оказались виды рода Stemphylium, причем устойчивость культур S. ilicis и S. sarciniforme в воздухе примерно одинакова, чрезвычайно высока и описывается многокомпонентными кривыми. Максимальная доза излучения 3,3 ∙ 10 8 Дж/м 2 для упомянутых культур соответствовала величине ЛД 99 . В вакууме, при более интенсивном облучении, выживаемость культур Stemphylium ilicis была несколько больше, чем S. sarciniforme (ЛД 99 равна 8,6 ∙ 10 8 и 5,2 ∙ 10 8 Дж/м 2 соответственно), т. е. выживаемость их практически одинакова и тоже описывалась многокомпонентными кривыми с обширным плато на уровне выживаемости 10 и 5%.

Таким образом, обнаружена уникальная устойчивость ряда представителей семейства Dematiaceae (S. ilicis, S. sarciniforme, мутанта C. transchelii Ч-1) к продолжительному облучению ИСС высокой интенсивности. Чтобы сравнить полученные результаты с ранее известными, мы уменьшили на порядок значения сублетальных доз, полученных для наших объектов, так как УФ-лучи (200-400 нм) установки ОС-78 составили 10% в ее световом потоке. Следовательно, выживаемость порядка 10 6 -10 7 Дж/м 2 в наших опытах на 2-3 порядка превосходит таковую, известную для высокоустойчивых микроорганизмов (Холл, 1975).

В свете представлений о механизме фотозащитного действия меланинового пигмента (Жданова и др., 1978), взаимодействие пигмента с квантами света приводило к фотоокислению его в грибной клетке и в дальнейшем к стабилизации процесса за счет обратимого фотопереноса электронов. В атмосфере аргона и в вакууме (13,3 м/Па) характер фотохимической реакции меланинового пигмента оставался таким же, но фотоокисление было выражено слабее. Увеличение УФ-устойчивости конидий темноцветных гифомицетов в вакууме нельзя связать с кислородным эффектом, который отсутствует при облучении «сухих» образцов. По-видимому, в нашем случае условия вакуума способствовали снижению уровня фотоокисления меланинового пигмента, ответственного за быструю гибель клеточной популяции в первые минуты облучения.

Таким образом, проведенное изучение устойчивости к УФ-излучению около 300 культур представителей семейства Dematiaceae показало значительную УФ-устойчивость к этому воздействию меланинсодержащих грибов. В пределах семейства установлена неоднородность видов по этому признаку. УФ-устойчивость предположительно зависит от толщины и компактности расположения меланиновых гранул в клеточной оболочке гриба. Испытана устойчивость ряда темноцветных видов к источникам УФ-лучей высокой мощности (лампы ДРШ-1000 и ДКсР-3000) и выявлена чрезвычайно устойчивая группа видов, значительно превосходящая по этому свойству такие виды микроорганизмов, как Micrococcus radiodurans и М. radiophilus. Установлен своеобразный характер выживаемости темноцветных гифомицетов по типу двух- и многокомпонентных кривых, которые впервые описаны нами.

Проведено изучение распределения признака устойчивости к УФ-лучам темноцветных гифомицетов в высокогорных почвах Памира и Памиро-Алая и в луговых почвах Украины. В обоих случаях оно напоминает нормальное распределение, но в микофлоре высокогорных почв явно преобладали УФ-устойчивые виды семейства Dematiaceae. Это свидетельствует о том, что солнечная инсоляция вызывает глубокие изменения в микофлоре поверхностных горизонтов почвы.

Основные характеристики:

  • Эстетические/визуальные характеристики;
  • Цвет;
  • Блеск;
  • Поверхность гладкая, текстурированная, зернистая…;
  • Рабочие характеристики;
  • Формуемость и общие механические свойства;
  • Коррозийная стойкость;
  • Устойчивость к УФ-излучению.

Все эти характеристики проверяются либо в процессе изготовления, либо после него, и могут быть проверены различными тестами и измерениями.

Характеристики продуктов основаны на этих тестах.

1. Механические свойства краски

Необходимые характеристики:

Формовочные методы:

  • Гибка;
  • Профилирование;
  • Глубокая вытяжка.

Контакт инструмент с органическим покрытием:

  • Износостойкость;
  • Смазочные свойства краски.

Температура обработки минимум 16°С

2. Механические свойства: Гибкость

Т-образный изгиб

Плоский образец окрашенного материала сгибается параллельно направлению прокатки. Действие повторяется для получения все менее жёсткого радиуса изгиба.

Определяется адгезия и гибкость системы покрытия в режиме деформации при изгибе (или режиме растяжения) при комнатной температуре (23°С ±2°С).

Результаты выражаются, например (0.5 WPO и 1,5T WC).

Ударное испытание

Плоский образец окрашенного материала деформируется путем удара 20 мм-го полусферического пробойника весом 2 кг. Высота падения определяет энергию удара. Проверяются адгезия покрытия и гибкость.

Оценивается способность окрашенного материала противостоять быстрой деформации и ударам (сопротивление отслоению покрытия и растрескиванию).

3. Механические свойства: Твердость

Твердость по карандашу

Карандаши различной твердости (6В – 6Н) перемещаются по поверхности покрытия при постоянной нагрузке.

Оценивается твердость поверхности по «карандашу».

Твердость по Клемену (Тест на царапание)

Индентор диаметром 1мм перемещается по поверхности с постоянной скоростью. Сверху могут накладываться различные нагрузки (от 200 г до 6 кг).

Определяются различные свойства: твердость поверхности покрытия при царапании, фрикционные свойства, адгезия с подложкой.

Результаты зависят от толщины окрашенного прдукта.

Твердость по Тейберу (тест на износостойкост)

Плоский образец окрашенного материала поворачивается под двумя абразивными кругами, установленными параллельно. Истирание достигается круговым движением испытательной панели и постоянной нагрузкой.

Твердость по Тейберу – это стойкость к истиранию при грубом контакте.

Измерение напряжения на металлочерепице показывает, что деформации в некоторых зонах могут быть очень сильными.

Растяжение на продольном направлеии может достигать 40%.

Усадка на поперечном направлении может достигать 35%.

5. Механические свойства: пример дефформации при производстве металлочерепицы.

Тест Марсиньяка:

1-й шаг: деформация в устройстве Марсиньяка;

2-й шаг состаривание в климатической камере (тропический тест).

Для воспроизведения в малых масштабах наиболее сильных деформаций, наблюдаемых на промышленной кровельной черепице.

Для моделирования старения краски после профилирования и оценки эффективности систем окраски.

6. Коррозионная стойкость.

Коррозионная стойкость окрашенных продуктов зависит от:

Окружающей среды (температура, влажность, осадки, агрессивные вещества, например хлориды…);

Природы и толщины органического покрытия;

Природы и толщины металлической основы;

Обработки поверхности.

Коррозионную стойкость можно измерять:

Ускоренными испытаниями:

Различные ускоренные испытания могут проводиться в различных «простых» (искусственно созданных) агрессивных условиях.

Природным воздействием:

Возможны воздействия различных сред: морской климат, тропический, континентальный, промышленные условия…

7. Коррозионная стойкость: ускоренные испытания

Солевой тест

Окрашенный образец подвергается воздействию сплошного солевого тумана (непрерывное распыление раствора хлорида натрия на 50г/л при 35°С);

Продолжительность теста меняется от 150 до 1000 часов в зависимости от спецификации продукта;

Способность ингибиторов (замедлителей) коррозии блокировать анодные и катодные реакции по краям и рискам;

Влажная адгезия грунта;

Качество обработки поверхности через ее чувствительность к увеличению уровня рН.

8. Коррозионная стойкость: ускоренные испытания

Устойчивость к конденсатам, QST тест

Плоский окрашенный образец выставляется в условиях конденсата (с одной стороны панель подвергается воздействию влажной атмосферы при 40°С, другая сторона держится в комнатных условиях).

Влагостойкость, KTW тест

Плоский окрашенный образец подвергается циклическим воздействиям (40°С > 25°С) в насыщенной водной атмосфере;

После тестирования определяется появление пузырей на металле тестируемого образца;

Влажная адгезия грунта и слоя обработки поверхности;

Барьерный эффект покрытия внешнего слоя и его пористость.

Тест на коррозию внутренних витков рулона

Плоский окрашенный образец помещается под нагрузкой 2 кг в пачке с другими образцами и подвергается циклическому воздействию (25°С, 50%RH> 50°C или 70°С, 95%RH);

Экстремальные условия, приводящие к коррозии между витками рулона во время транспортировки или хранения (влажная адгезия грунта, барьерный эффект покрытия верхнего слоя и пористость в закрытых условиях пачки).


90° на Север

5° на Юг

10. Коррозионная стойкость: Открытое воздействие (Стандарты долговечности: EN 10169)

В соответствии с EN 10169 продукты для открытых сооружений должны подвергаться воздействию окружающей среды в течении минимум 2 лет.

Характеристики, необходимые для RC5: 2 мм и 2S2, в основном под навесом (образец 90°С) и в зонах перекрытия внахлест (образец 5°).

11. Устойчивость к УФ воздействию (выгоранию)

После коррозии УФ воздействие является второй главной угрозой долговечности окрашенных материалов.

Термин «УФ выгорание» означает изменение внешнего вида краски (в основном цвета и блеска) со временем.

Не только воздействие УФ излучения ухудшает качество краски, но и другие воздействия окружающей среды:

Солнечный свет – УФ, видимый и инфро-красый диапазоны;

Влажность – время намокания поверхности, относительная влажность;

Температура – стойкость к растрескиванию – максимальные значеия и ежедневные циклы нагрева/охлаждеия;

Ветер, дождь – истирание песком;

Соль – промышленные, прибрежные зоны;

Грязь – воздействие грунта и загрязняющие вещества…

12. УФ выгорание

Ускоренный тест устойчивость к УФ

Как проводится тест?

Стандарты: EN 10169;

Плоский образец ОС подвергается воздеййствию УФ излучению;

УФ облучение;

Возможные периоды кондесации;

2000 часов воздействия (Циклы 4Н конденсации 40°С/4Н облучение при 60°С с излучением 0,89В/м2 при 340 нм);

После тестирования определяются изменения цвета и блеска.

13. Устойчивость к УФ

- EN 10169: Ускоренные испытания

- EN 10169: Воздействие окружающей среды:

Только боковое воздействие на образец в течении 2 лет в местах с фиксированной энергией солнечного излучения (не менее 4500 МДж/м2/год) > Гваделупа, Флорида, Санари и т.д…


Жесткий (непластифицированный) поливинилхлорид появился на российском рекламном рынке первым, и, несмотря на увеличивающийся с каждым годом ассортимент предлагаемых полимерных материалов, в некоторых областях рекламного производства продолжает устойчиво сохранять лидирующие позиции. Это объясняется наличием у ПВХ комплекса свойств, необходимых для решения разнообразных задач и удовлетворяющих самые строгие требования, предъявляемые к конструкционным материалам этого типа.

ПВХ характеризуется природной устойчивостью к ультрафиолетовому излучению, химическому воздействию, механической коррозии и контактным повреждениям. На протяжении длительного времени эксплуатации на улице не теряет первоначальных свойств. Не впитывает атмосферной влаги и, соответственно, не склонен к образованию конденсата на поверхности. Среди всех прочих пластиков обладает уникальной огнестойкостью. В нормальных эксплуатационных условиях не представляет опасности ни для человека, ни для окружающей среды. Легко обрабатывается механически, формуется (компактный материал), сваривается и склеивается. При пленочной аппликации нет необходимости задумываться о «подводных камнях» - ПВХ без участия человека не преподнесет «сюрпризов».

К условным недостаткам поливинилхлорида можно отнести:

  • непродолжительную устойчивость цветных модификаций к солнечным лучам (это не касается материалов с дополнительной УФ-стабилизацией);
  • возможное наличие у материалов неизвестного происхождения поверхностных разделительных смазок, требующих удаления;
  • ограниченная морозостойкость (до -20 °С), далеко не всегда подтверждаемая на практике (при соблюдении всех технологических правил изготовления конструкций и их монтажа, при отсутствии значительных механических нагрузок ПВХ стабильно ведет себя и при более низких температурах);
  • более высокий по сравнению со многими другими полимерными материалами коэффициент линейного теплового расширения, т. е. более широкий диапазон размерных искажений;
  • недостаточно высокая степень светопропускания прозрачного материала (ок. 88 %);
  • повышенные требования к утилизации: продукты дымления и горения опасны для человека и окружающей среды.

Жесткий поливинилхлорид производится в различных модификациях только методом экструзии. Широкий ассортимент ПВХ, включающий листы:

  • компактные и вспененные;
  • с глянцевой и матовой поверхностью;
  • белые, цветные, прозрачные и транслюцентные;
  • плоские и рельефные;
  • стандартного исполнения и повышенной прочности на изгиб,

позволяет использовать этот материал практически в любых областях рекламного производства.

Татьяна Дементьева
инженер-технолог