Ядерная физика. Строение атомного ядра. Понятие атом. Строение атома и атомного ядра Строение и свойства ядра атома

В конце XIX - начале XX века физики доказали, что атом является сложной частицей и состоит из более простых (элементарных) частиц. Были обнаружены:


· катодные лучи (английский физик Дж. Дж. Томсон,1897 г.),частицы которых получили название электроны e - (несут единичный отрицательный заряд);


· естественная радиоактивность элементов (французские ученые - радиохимики А. Беккерель и М. Склодовская-Кюри, физик Пьер Кюри, 1896 г.) и существование α-частиц (ядер гелия 4 He 2 +);


· наличие в центре атома положительно заряженного ядра (английский физик и радиохимик Э. Резерфорд, 1911 г.);


· искусственное превращение одного элемента в другой, например азота в кислород (Э. Резерфорд, 1919 г.). Из ядра атома одного элемента (азота - в опыте Резерфорда) при соударении с α-частицей образовывалось ядро атома другого элемента (кислорода) и новая частица, несущая единичный положительный заряд и названная протоном (p + , ядро 1H)


· наличие в ядре атома электронейтральных частиц - нейтронов n 0 (английский физик Дж. Чедвик, 1932 г.). В результате проведенных исследований было установлено, что в атоме каждого элемента (кроме 1H) присутствуют протоны, нейтроны и электроны, причем протоны и нейтроны сосредоточены в ядре атома, а электроны - на его периферии (в электронной оболочке).


Электроны принято обозначать так: e − .


Электроны e − очень легкие, почти невесомые, но зато имеют отрицательный электрический заряд. Он равен -1. Электрический ток, которым все мы пользуемся - это поток электронов, бегущий в проводах.


Нейтроны обозначают так: n 0 , а протоны так: p + .


По массе нейтроны и протоны почти одинаковы.


Число протонов в ядре равно числу электронов в оболочке атома и отвечает порядковому номеру этого элемента в Периодической системе.

Атомное ядро

Центральная часть атома, в которой сосредоточена основная его масса и структура которого определяет химический элемент, к которому относится атом.


Атомное ядро состоит из нуклонов - положительно заряженных протонов p + и нейтральных нейтронов n 0 , которые связаны между собой при помощи сильного взаимодействия. Атомное ядро, рассматриваемое как класс частиц с определённым числом протонов и нейтронов, часто называется нуклидом.


Количество протонов в ядре называется его зарядовым числом Z - это число равно порядковому номеру элемента, к которому относится атом в таблице Менделеева.


Число нейтронов в ядре обозначается буквой N , а число протонов - буквой Z . Эти числа связаны между собой простым соотношением:


Полное количество нуклонов в ядре называется его массовым числом A = N + Z и приблизительно равно средней массе атома, указанной в таблице Менделеева.


Ядра атомов с одинаковым числом протонов и разным числом нейтронов называются изотопами.


Многие элементы имеют по одному природному изотопу, например, Be, F, Nа, Al, P, Mn,Co, I, Au и некоторые другие. Но большинство элементов имеют по два, по три иболее устойчивых изотопа.


Например:



Ядра атомов с одинаковым числом нейтронов, но разным числом протонов - называются изотонами.


Атомы различных элементов с одинаковой атомной массой-А называются изобарами.

>> Строение атомного ядра. Ядерные силы

§ 104 СТРОЕНИЕ АТОМНОГО ЯДРА. ЯДЕРНЫЕ СИЛЫ

Сразу же после того, как в опытах Чедвика был открыт нейтрон , советский физик Д. Д. Иваненко и немецкий ученый В. Гейзенберг в 1932 г. предложили протонно-нейтронную модель ядра. Она была подтверждена последующими исследованиями ядерных превращений и в настоящее время является общепризнанной.

Протонно-нейтронная модель ядра. Согласно протонно-нейтронной модели ядра состоят из элементарных частиц двух видов - протонов и нейтронов.

Так как в целом атом электрически нейтрален, а заряд протона равен модулю заряда э-иектрона, то число протонов в ядре равно числу электронов в атомной оболочке. Следовательно, число протонов в ядре равно атомному номеру элемента Z в периодической системе элементов Д. И. Менделеева .

Сумму числа протонов Z и числа нейтронов N в ядре называют массовым числом и обозначают буквой А:

А = Z + N. (13.2)

Массы протона и нейтрона близки друг к другу, и каждая из них примерно равна атомной единице массы. Масса электронов в атоме много меньше массы его ядра. Поэтому массовое число ядра равно округленной до целого числа относительной атомной массе элемента. Массовые числа могут быть определены путем приближенного измерения массы ядер приборами, не обладающими высокой точностью.

Изотопы представляют собой ядра с одним и тем же значением но с различными массовыми числами А, т. е. с различными числами нейтронов N.

Ядерные силы. Так как ядра весьма устойчивы, то протоны и нейтроны должны удерживаться внутри ядра какими-то силами, причем очень большими. Что это за силы? Сразу можно сказать, что это не гравитационные силы, которые слишком слабые. Устойчивость ядра не может быть объяснена также электромагнитными силами, так как между одноименно заряженными протонами действует электрическое отталкивание. А нейтроны не имеют электрического заряда.

Значит, между ядерными частицами - протонами и нейтронами (их называют нуклонами) - действуют особые силы, называемые ядерными силами.

Каковы основные свойства ядерных сил? Ядерные силы примерно в 100 раз превышают электрические (кулоновские) силы. Это самые мощные силы из всех сущес;гнующих в природе. Поэтому взаимодействия ядерных частиц часто называют сильными взаимодействиями.

Сильные взаимодействия проявляются не только во взаимодействиях нуклонов в ядре . Это особый тип взаимодействий, присущий большинству элементарных частиц наряду с электромагнитными взаимодействиями.

Другая важная особенность ядерных сил - их коротко-действие. Электромагнитные силы сравнительно медленно ослабевают с увеличением расстояния. Ядерные силы заметно проявляются лишь на расстояниях, равных размерам ядра (10 -12 -10 -13 см), что показали уже опыты Резерфорда по рассеянию -частиц атомными ядрами. Ядерные силы - это, так сказать, «богатырь с очень короткими руками». Законченная количественная теория ядерных сил пока еще не разработана. Значительные успехи в ее разработке были достигнуты совсем недавно - в последние 10-15 лет.

Ядра атомов состоят из протонов и нейтронов. Эти частицы удерживаются в ядре ядерными силами.

Каковы главные особенности ядерных сил!

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Существование атомных ядер впервые было экспериментально доказано в знаменитых опытах Резерфорда по рассеянию альфа-частиц. В этих опытах удалось также установить размеры ядра. Оказалось, что диаметр ядра имеет порядок . В итоге возникла планетарная модель атома, которая была детально разработана Н. Бором. Теория Бора позволила объяснить многие наблюдаемые свойства атомов.

Атомное ядро на Земле и в космосе. Многочисленные опытные факты, такие, как естественная и искусственная радиоактивность, ядерные реакции, свидетельствуют о сложном строении ядра. Однако в окружающем нас земном мире атомные ядра, как правило, существуют только в своих основных энергетических состояниях. Большинство ядер ведут себя совершенно пассивно, выступая лишь носителями электрического заряда и массы, и никак не проявляют своих внутренних динамических свойств. Фактически на Земле все интересные ядерные явления происходят только в созданном руками человека искусственном мире ядерных реакторов и ускорителей заряженных частиц. Наиболее впечатляющие явления разыгрываются в гигантских ускорителях, способных сообщить разгоняемым частицам-«снарядам» огромные энергии, не встречающиеся в обычных условиях.

Иначе обстоит дело в масштабах Вселенной. Энергетические превращения, происходящие в недрах звезд, квазаров и других космических объектов, - это арена проявления динамических свойств ядер и элементарных частиц. В конечном итоге именно этим процессам мы обязаны всеми доступными на Земле источниками энергии. И сам состав окружающего нас сегодня материального мира представляет собой продукт ядерных реакций, происходящих на протяжении истории Вселенной.

Состав атомного ядра. По современным представлениям ядро атома любого элемента состоит из протонов и нейтронов, называемых нуклонами. Основные характеристики стабильных ядер - это зарядовое число равное числу протонов, входящих в состав ядра, и массовое число А, равное полному числу нуклонов в ядре. Число нейтронов в ядре, очевидно, равно разности

Так как заряд протона представляет собой элементарный положительный заряд Кл, то электрический заряд ядра равен . В нейтральном атоме полное число электронов в электронной оболочке равно Поэтому зарядовое число ядра совпадает с порядковым номером элемента в периодической системе Менделеева и определяет все его химические свойства.

Наряду с термином «ядро атома» используется также термин нуклид. Нуклиды с одинаковыми зарядовыми числами но различными числами нейтронов называются изотопами, так как соответствуют одному и тому же химическому элементу, т. е. одному и тому же месту в таблице Менделеева. Химические элементы имеют по нескольку изотопов и в природе встречаются в виде смесей определенного процентного состава. Нуклиды с одинаковыми массовыми числами А, но с различными и называются изобарами (т. е. одинаково тяжелыми).

Массы протонов и нейтронов очень близки: масса протона масса нейтрона те, где кг - масса электрона. Поэтому масса нуклида практически определяется общим числом А входящих в него нуклонов, а не значениями и За атомную единицу массы принимают 1/12 часть массы нуклида изотопа углерода содержащего 12 нуклонов. Поэтому в атомных единицах масса любого нуклона почти не отличается от единицы. В этих единицах масса ядра приближенно равна массовому числу А.

Энергия связи. Неточное совпадение массы нуклида с его массовым числом обусловлено не только различием масс протонов и нейтронов, но и тем, что их массы не складываются аддитивно в массу образуемого ими нуклида М:

Разность между суммой масс протонов и нейтронов и массой ядра М называется дефектом массы. Дефект массы определяет энергию связи ядра т. е. ту энергию, которую необходимо затратить, чтобы расщепить ядро на отдельные нуклоны:

Соотношение (1) является следствием общей релятивистской формулы связывающей энергию покоя любого тела с его массой Очевидно, что энергия связи характеризует взаимодействие между нуклонами в ядре.

Ядерные силы. Силы, удерживающие нуклоны в ядре, называются ядерными. Эти силы представляют собой проявление самого интенсивного из известных в физике взаимодействий - так называемого

сильного взаимодействия. Ядерные силы, действующие между двумя протонами в ядре, примерно на два порядка больше кулоновских электростатических сил, действующих между ними, и в 103 раз больше сил их гравитационного взаимодействия.

На основании опытных данных можно заключить, что нейтроны и протоны в ядре в отношении сильного взаимодействия ведут себя практически одинаково: ядерные силы между двумя протонами, двумя нейтронами или протоном и нейтроном неразличимы. Поэтому протоны и нейтроны в ядре рассматривают как два различных зарядовых состояния одной и той же частицы-нуклона. Независимость ядерных сил от зарядового состояния нуклонов называется изотопической инвариантностью.

Действие ядерных сил быстро спадает с расстоянием: на расстояниях больших см их действие не проявляется. Вплоть до расстояния порядка они проявляются как силы притяжения, на меньших расстояниях - как силы отталкивания. Силы отталкивания настолько быстро растут с уменьшением расстояния, что нуклоны в ядре можно рассматривать как соприкасающиеся частицы неизменных размеров.

Размеры ядер. Размеры ядер зависят от числа содержащихся в них нуклонов. Средняя концентрация нуклонов в ядре для всех ядер с практически одинакова. Это означает, что объем ядра примерно пропорционален числу нуклонов А и, следовательно, его радиус пропорционален

где см. Плотность ядерной материи чрезвычайно велика по сравнению с плотностью обычных веществ и составляет около Такая плотность вещества характерна и для некоторых космических объектов, например нейтронных звезд - пульсаров.

Оказывается, что энергия связи также примерно пропорциональна числу А нуклонов в ядре, так что удельная энергия связи (т. е. энергия связи в расчете на один нуклон) слабо меняется при изменении А. Для большинства ядер значение лежит в интервале от 6 до

Энергия связи и соотношения неопределенностей. Удельную энергию связи можно оценить на основе известных размеров ядра с помощью соотношений неопределенностей Гейзенберга. Когда нуклон находится внутри ядра, т. е. локализован в области размером порядка неопределенность в значении его импульса составляет

Так как само значение импульса не может быть меньше этой неопределенности то эту же оценку можно использовать и для

импульса нуклона Соответствующее такому импульсу значение скорости нуклона массы составляет несколько десятых долей скорости света. Поэтому его кинетическая энергия определяется нерелятивистским выражением и равна

Так как нуклон в ядре находится в связанном состоянии, то глубина потенциальной ямы, в которой он движется, имеет по крайней мере такой же порядок величины.

Полагая неопределенность в значении импульса одного порядка с самим импульсом, мы заведомо считали, что поведение нуклона в ядре нельзя описывать как движение классической частицы. К такому же выводу можно прийти на основе представлений о волнах де Бройля. Если оценить значение импульса нуклона на основе известной из опыта энергии связи на нуклон и подсчитать соответствующую такому импульсу длину волны де Бройля, то она окажется того же порядка величины, что и размер ядра.

Значение удельной энергии связи составляет менее одного процента энергии покоя нуклона ГэВ. Поэтому действительно можно считать, что ядро состоит из отдельных нуклонов, которые сохраняют свою индивидуальность и внутри ядра.

Аналогичные соображения показывают, что в состав ядра не могут входить электроны. Если электрон локализован в ядре, т. е. в области размером см, то с помощью соотношений неопределенностей можно убедиться, что он будет ультрарелятивистским с кинетической энергией ГэВ. Это значение существенно превосходит и энергию покоя электрона, равную 0,5 МэВ, и энергию связи ядра в расчете на одну частицу. Последнее, естественно, несовместимо с предположением, что электрон находится внутри ядра.

Капельная модель ядра. О приближенном постоянстве удельной энергии связи для различных ядер говорят как о насыщении ядерных сил. Оно фактически означает, что каждый нуклон эффективно взаимодействует не со всеми нуклонами ядра (в этом случае при А» 1 энергия связи была бы пропорциональна а лишь со своим ближайшим окружением. Эта ситуация до некоторой степени аналогична той, которая встречается при описании взаимодействия молекул жидкости. Такая аналогия в свое время послужила основой для создания так называемой капельной модели ядра, в которой принимается, что ядро ведет себя подобно капле несжимаемой заряженной жидкости. С помощью формулы (2) можно определить некоторые параметры такой ядерной жидкости. Для концентрации нуклонов в ядре, очевидно, можно написать

Отсюда для плотности ядерного вещества имеем

что совпадает с приведенным выше значением. Нетрудно оценить и среднее расстояние между нуклонами в ядре:

Поскольку концентрация нуклонов, плотность вещества в ядре, а также среднее расстояние между нуклонами практически одинаковы во всех ядрах, то ядерное вещество в капельной модели ядра можно считать практически несжимаемым.

Капельная модель позволила описать не только основное состояние ядра, но и некоторые из возбужденных состояний, рассматривая их как колебания формы поверхности капли. Однако эта чрезвычайно простая модель не в состоянии объяснить всего многообразия наблюдаемых свойств атомных ядер.

Кулоновское отталкивание протонов. Энергия связи нуклонов в ядре уменьшается из-за кулоновского отталкивания между протонами. Это кулоновское отталкивание является дальнодействующим в отличие от «контактного» сильного взаимодействия, действующего только между соприкасающимися нуклонами. Для легких ядер эффект кулоновского отталкивания не играет существенной роли, но для тяжелых ядер ситуация уже иная. В самом деле, энергия кулоновского отталкивания определяется попарным взаимодействием всех протонов ядра и потому пропорциональна т. е. пропорциональна при Энергия притяжения нуклонов из-за сильного взаимодействия, как уже отмечалось, пропорциональна полному числу нуклонов А. Так как числа протонов и нейтронов в устойчивых ядрах приблизительно одинаковы, то эта энергия фактически пропорциональна Поэтому с ростом уже так много протонов, что полная их стабильность оказывается вообще невозможной.

Наибольшей устойчивостью и распространенностью в природе отличаются ядра, у которых число протонов или число нейтронов равно одному из так называемых магических чисел: 2, 8, 20, 28, 50, 82, 126. Если у ядра одновременно являются магическими как число нейтронов, так и число протонов, то такие дважды магические ядра отличаются особенно большой устойчивостью. Таких ядер всего пять: Повышенная устойчивость магических ядер объясняется в так называемой оболочечной моделью ядра.

Как проявляет себя атомное ядро в земных условиях и в масштабах Вселенной?

Как связаны между собой порядковый номер элемента в периодической системе с зарядом его ядра?

Что такое изотопы и изобары?

Почему масса ядра не равна сумме масс образующих его протонов и нейтронов?

Как с помощью соотношений неопределенностей оценить энергию связи нуклонов в ядре?

Что такое капельная модель ядра?

Почему относительное число нейтронов в ядре больше у тяжелых ядер?

Какие атомные ядра отличаются наибольшей устойчивостью?

«Физика - 11 класс»

Строение атомного ядра. Ядерные силы

Сразу же после того, как в опытах Чедвика был открыт нейтрон, советский физик Д. Д. Иваненко и немецкий ученый В. Гейзенберг в 1932 г. предложили протонно-нейтронную модель ядра.
Она была подтверждена последующими исследованиями ядерных превращений и в настоящее время является общепризнанной.


Протонно-нейтронная модель ядра


Согласно протоннонейтронной модели ядра состоят из элементарных частиц двух видов - протонов и нейтронов.

Так как в целом атом электрически нейтрален, а заряд протона равен модулю заряда электрона, то число протонов в ядре равно числу электронов в атомной оболочке.
Следовательно, число протонов в ядре равно атомному номеру элемента Z в периодической системе элементов Д. И. Менделеева.

Сумму числа протонов Z и числа нейтронов N в ядре называют массовым числом и обозначают буквой А :


A = Z + N


Массы протона и нейтрона близки друг к другу и каждая из них примерно равна атомной единице массы.
Масса электронов в атоме много меньше массы его ядра.
Поэтому массовое число ядра равно округленной до целого числа относительной атомной массе элемента.
Массовые числа могут быть определены путем приближенного измерения массы ядер приборами, не обладающими высокой точностью.

Изотопы представляют собой ядра с одним и тем же значением Z , но с различными массовыми числами А , т. е. с различными числами нейтронов N .


Ядерные силы


Так как ядра весьма устойчивы, то протоны и нейтроны должны удерживаться внутри ядра какими-то силами, причем очень большими.
Это не гравитационные силы, которые слишком слабые.
Устойчивость ядра не может быть объяснена также электромагнитными силами, так как между одноименно заряженными протонами действует электрическое отталкивание.
А нейтроны не имеют электрического заряда.

Значит, между ядерными частицами - протонами и нейтронами, их называют нуклонами - действуют особые силы, называемые ядерными силами .

Каковы основные свойства ядерных сил? Ядерные силы примерно в 100 раз превышают электрические (кулоновские) силы.
Это самые мощные силы из всех существующих в природе.
Поэтому взаимодействия ядерных частиц часто называют сильными взаимодействиями .

Сильные взаимодействия проявляются не только во взаимодействиях нуклонов в ядре.
Это особый тип взаимодействий, присущий большинству элементарных частиц наряду с электромагнитными взаимодействиями.

Другая важная особенность ядерных сил - их коротко- действие.
Электромагнитные силы сравнительно медленно ослабевают с увеличением расстояния.
Ядерные силы заметно проявляются лишь на расстояниях, равных размерам ядра (10 -12 -10 -13 см), что показали уже опыты Резерфорда по рассеянию α-частиц атомными ядрами.
Законченная количественная теория ядерных сил пока еще не разработана.
Значительные успехи в ее разработке были достигнуты совсем недавно - в последние 10-15 лет.

Ядра атомов состоят из протонов и нейтронов. Эти частицы удерживаются в ядре ядерными силами.

Изотопы

Изучение явления радиоактивности привело к важному открытию: была выяснена природа атомных ядер.

В результате наблюдения огромного числа радиоактивных превращений постепенно обнаружилось, что существуют вещества, тождественные по своим химическим свойствам, но имеющие совершенно различные радиоактивные свойства (т. е. распадающиеся по-разному).
Их никак не удавалось разделить ни одним из известных химических способов.
На этом основании Содди в 1911 г высказал предположение о возможности существования элементов с одинаковыми химическими свойствами, но различающихся, в частности, своей радиоактивностью.
Эти элементы нужно помещать в одну и ту же клетку периодической системы Д. И. Менделеева.
Содди назвал их изотопами (т. е. занимающими одинаковые места).

Предположение Содди получило блестящее подтверждение и глубокое толкование год спустя, когда Дж. Дж. Томсон провел точные измерения массы ионов неона методом отклонения их в электрическом и магнитном полях.
Он обнаружил, что неон представляет собой смесь двух видов атомов.
Бо́льшая часть их имеет относительную массу, равную 20.
Но существует незначительная часть атомов с относительной атомной массой 22.
В результате относительная атомная масса смеси была принята равной 20,2.
Атомы, обладающие одними и теми же химическими свойствами, различались массой.

Оба вида атомов неона, естественно, занимают одно и то же место в таблице Д. И. Менделеева и, следовательно, являются изотопами.
Таким образом, изотопы могут различаться не только своими радиоактивными свойствами, но и массой.
Именно поэтому у изотопов заряды атомных ядер одинаковы, а значит, число электронов в оболочках атомов и, следовательно, химические свойства изотопов одинаковы.
Но массы ядер различны.
Причем ядра могут быть как радиоактивными, так и стабильными.
Различие свойств радиоактивных изотопов связано с тем, что их ядра имеют различную массу.

В настоящее время установлено существование изотопов у большинства химических элементов.
Некоторые элементы имеют только нестабильные (т. е. радиоактивные) изотопы.
Изотопы есть у самого тяжелого из существующих в природе элементов - урана (относительные атомные массы 238, 235 и др.) и у самого легкого - водорода (относительные атомные массы 1, 2, 3).

Особенно интересны изотопы водорода, так как они различаются по массе в 2 и 3 раза.
Изотоп с относительной атомной массой 2 называется дейтерием .
Он стабилен (т. е. не радиоактивен) и входит в качестве небольшой примеси (1: 4500) в обычный водород.
При соединении дейтерия с кислородом образуется так называемая тяжелая вода.
Ее физические свойства заметно отличаются от свойств обычной воды.
При нормальном атмосферном давлении она кипит при 101,2 °С и замерзает при 3,8 °С.

Изотоп водорода с атомной массой 3 называется тритием .
Он β-радиоактивен, и его период полураспада около 12 лет.

Существование изотопов доказывает, что заряд атомного ядра определяет не все свойства атома, а лишь его химические свойства и те физические свойства, которые зависят от периферии электронной оболочки, например размеры атома.
Масса же атома и его радиоактивные свойства не определяются порядковым номером в таблице Д. И. Менделеева.

Примечательно, что при точном измерении относительных атомных масс изотопов выяснилось, что они близки к целым числам.
А вот атомные массы химических элементов иногда сильно отличаются от целых чисел.
Так, относительная атомная масса хлора равна 35,5.
Это значит, что в естественном состоянии химически чистое вещество представляет собой смесь изотопов в различных пропорциях.
Целочисленность (приближенная) относительных атомных масс изотопов очень важна для выяснения строения атомного ядра.

Большинство химических элементов имеют изотопы.
Заряды атомных ядер изотопов одинаковы, но массы ядер различны.

Единственный стабильный атом, не содержащий нейтронов в ядре - лёгкий водород (протий).

Атомное ядро, рассматриваемое как класс частиц с определённым числом протонов и нейтронов, принято называть нуклидом .
В некоторых редких случаях могут образовываться короткоживущие экзотические атомы , у которых вместо нуклона ядром служат иные частицы.

Количество протонов в ядре называется его зарядовым числом Z {\displaystyle Z} - это число равно порядковому номеру элемента , к которому относится атом, в таблице (Периодической системе элементов) Менделеева . Количество протонов в ядре определяет структуру электронной оболочки нейтрального атома и, таким образом, химические свойства соответствующего элемента. Количество нейтронов в ядре называется его изотопическим числом N {\displaystyle N} . Ядра с одинаковым числом протонов и разным числом нейтронов называются изотопами . Ядра с одинаковым числом нейтронов, но разным числом протонов - называются изотонами . Термины изотоп и изотон используются также применительно к атомам, содержащим указанные ядра, а также для характеристики нехимических разновидностей одного химического элемента. Полное количество нуклонов в ядре называется его массовым числом A {\displaystyle A} ( A = N + Z {\displaystyle A=N+Z} ) и приблизительно равно средней массе атома, указанной в таблице Менделеева. Нуклиды с одинаковым массовым числом, но разным протон-нейтронным составом принято называть изобарами .

Как и любая квантовая система, ядра могут находиться в метастабильном возбуждённом состоянии, причём в отдельных случаях время жизни такого состояния исчисляется годами. Такие возбуждённые состояния ядер называются ядерными изомерами .

Энциклопедичный YouTube

    1 / 5

    ✪ Строение атомного ядра. Ядерные силы

    ✪ Ядерные силы

    ✪ Строение атомного ядра Ядерные силы

    ✪ КАК УСТРОЕНА АТОМНАЯ БОМБА "ТОЛСТЯК"

    ✪ Ядерная физика - Строение ядра атома v1

    Субтитры

История

Рассеяние заряженных частиц может быть объяснено, если предположить такой атом, который состоит из центрального электрического заряда, сосредоточенного в точке и окружённого однородным сферическим распределением противоположного электричества равной величины. При таком устройстве атома α- и β-частицы, когда они проходят на близком расстоянии от центра атома, испытывают большие отклонения, хотя вероятность такого отклонения мала.

Таким образом Резерфорд открыл атомное ядро, с этого момента и ведёт начало ядерная физика, изучающая строение и свойства атомных ядер.

После обнаружения стабильных изотопов элементов, ядру самого лёгкого атома была отведена роль структурной частицы всех ядер. С 1920 года ядро атома водорода имеет официальный термин - протон . После промежуточной протон-электронной теории строения ядра, имевшей немало явных недостатков, в первую очередь она противоречила экспериментальным результатам измерений спинов и магнитных моментов ядер , в 1932 году Джеймсом Чедвиком была открыта новая электрически нейтральная частица, названная нейтроном . В том же году Иваненко и, независимо, Гейзенберг выдвинули гипотезу о протон-нейтронной структуре ядра. В дальнейшем, с развитием ядерной физики и её приложений, эта гипотеза была полностью подтверждена .

Теории строения атомного ядра

В процессе развития физики выдвигались различные гипотезы строения атомного ядра; тем не менее, каждая из них способна описать лишь ограниченную совокупность ядерных свойств. Некоторые модели могут взаимоисключать друг друга.

Наиболее известными являются следующие:

  • Капельная модель ядра - предложена в 1936 году Нильсом Бором .
  • Оболочечная модель ядра - предложена в 30-х годах XX века.
  • Обобщённая модель Бора - Моттельсона
  • Кластерная модель ядра
  • Модель нуклонных ассоциаций
  • Сверхтекучая модель ядра
  • Статистическая модель ядра

Ядерно-физические характеристики

Впервые заряды атомных ядер определил Генри Мозли в 1913 году . Свои экспериментальные наблюдения учёный интерпретировал зависимостью длины волны рентгеновского излучения от некоторой константы Z {\displaystyle Z} , изменяющейся на единицу от элемента к элементу и равной единице для водорода:

1 / λ = a Z − b {\displaystyle {\sqrt {1/\lambda }}=aZ-b} , где

A {\displaystyle a} и b {\displaystyle b} - постоянные.

Из чего Мозли сделал вывод, что найденная в его опытах константа атома, определяющая длину волны характеристического рентгеновского излучения и совпадающая с порядковым номером элемента, может быть только зарядом атомного ядра, что стало известно под названием закон Мозли .

Масса

Из-за разницы в числе нейтронов A − Z {\displaystyle A-Z} изотопы элемента имеют разную массу M (A , Z) {\displaystyle M(A,Z)} , которая является важной характеристикой ядра. В ядерной физике массу ядер принято измерять в атомных единицах массы (а. е. м. ), за одну а. е. м. принимают 1/12 часть массы нуклида 12 C . Следует отметить, что стандартная масса, которая обычно приводится для нуклида - это масса нейтрального атома . Для определения массы ядра нужно из массы атома вычесть сумму масс всех электронов (более точное значение получится, если учесть ещё и энергию связи электронов с ядром).

Кроме того, в ядерной физике часто используется энергетический эквивалент массы . Согласно соотношению Эйнштейна , каждому значению массы M {\displaystyle M} соответствует полная энергия:

E = M c 2 {\displaystyle E=Mc^{2}} , где c {\displaystyle c} - скорость света в вакууме .

Соотношение между а. е. м. и её энергетическим эквивалентом в джоулях :

E 1 = 1 , 660539 ⋅ 10 − 27 ⋅ (2 , 997925 ⋅ 10 8) 2 = 1 , 492418 ⋅ 10 − 10 {\displaystyle E_{1}=1,660539\cdot 10^{-27}\cdot (2,997925\cdot 10^{8})^{2}=1,492418\cdot 10^{-10}} , E 1 = 931 , 494 {\displaystyle E_{1}=931,494} .

Радиус

Анализ распада тяжёлых ядер уточнил оценку Резерфорда и связал радиус ядра с массовым числом простым соотношением:

R = r 0 A 1 / 3 {\displaystyle R=r_{0}A^{1/3}} ,

где - константа.

Так как радиус ядра не является чисто геометрической характеристикой и связан прежде всего с радиусом действия ядерных сил , то значение r 0 {\displaystyle r_{0}} зависит от процесса, при анализе которого получено значение R {\displaystyle R} , усреднённое значение r 0 = 1 , 23 ⋅ 10 − 15 {\displaystyle r_{0}=1,23\cdot 10^{-15}} м, таким образом радиус ядра в метрах :

R = 1 , 23 ⋅ 10 − 15 A 1 / 3 {\displaystyle R=1,23\cdot 10^{-15}A^{1/3}} .

Моменты ядра

Как и составляющие его нуклоны, ядро имеет собственные моменты.

Спин

Поскольку нуклоны обладают собственным механическим моментом, или спином, равным 1 / 2 {\displaystyle 1/2} , то и ядра должны иметь механические моменты. Кроме того, нуклоны участвуют в ядре в орбитальном движении, которое также характеризуется определённым моментом количества движения каждого нуклона. Орбитальные моменты принимают только целочисленные значения ℏ {\displaystyle \hbar } (постоянная Дирака). Все механические моменты нуклонов, как спины, так и орбитальные, суммируются алгебраически и составляют спин ядра.

Несмотря на то, что число нуклонов в ядре может быть очень велико, спины ядер обычно невелики и составляют не более нескольких ℏ {\displaystyle \hbar } , что объясняется особенностью взаимодействия одноимённых нуклонов. Все парные протоны и нейтроны взаимодействуют только так, что их спины взаимно компенсируются, то есть пары всегда взаимодействуют с антипараллельными спинами. Суммарный орбитальный момент пары также всегда равен нулю. В результате ядра, состоящие из чётного числа протонов и чётного числа нейтронов, не имеют механического момента. Отличные от нуля спины существуют только у ядер, имеющих в своём составе непарные нуклоны, спин такого нуклона суммируется с его же орбитальным моментом и имеет какое-либо полуцелое значение: 1/2, 3/2, 5/2. Ядра нечётно-нечётного состава имеют целочисленные спины: 1, 2, 3 и т. д. .

Магнитный момент

Измерения спинов стали возможными благодаря наличию непосредственно связанных с ними магнитных моментов . Они измеряются в магнетонах и у различных ядер равны от −2 до +5 ядерных магнетонов. Из-за относительно большой массы нуклонов магнитные моменты ядер очень малы по сравнению с магнитными моментами электронов , поэтому их измерение гораздо сложнее. Как и спины, магнитные моменты измеряются спектроскопическими методами , наиболее точным является метод ядерного магнитного резонанса .

Магнитный момент чётно-чётных пар, как и спин, равен нулю. Магнитные моменты ядер с непарными нуклонами образуются собственными моментами этих нуклонов и моментом, связанным с орбитальным движением непарного протона .

Электрический квадрупольный момент

Атомные ядра, спин которых больше или равен единице, имеют отличные от нуля квадрупольные моменты, что говорит об их не точно сферической форме. Квадрупольный момент имеет знак плюс, если ядро вытянуто вдоль оси спина (веретенообразное тело), и знак минус, если ядро растянуто в плоскости, перпендикулярной оси спина (чечевицеобразное тело). Известны ядра с положительными и отрицательными квадрупольными моментами. Отсутствие сферической симметрии у электрического поля , создаваемого ядром с ненулевым квадрупольным моментом, приводит к образованию дополнительных энергетических уровней атомных электронов и появлению в спектрах атомов линий сверхтонкой структуры , расстояния между которыми зависят от квадрупольного момента .

Энергия связи

Устойчивость ядер

Из факта убывания средней энергии связи для нуклидов с массовыми числами больше или меньше 50-60 следует, что для ядер с малыми A {\displaystyle A} энергетически выгоден процесс слияния - термоядерный синтез , приводящий к увеличению массового числа, а для ядер с большими A {\displaystyle A} - процесс деления . В настоящее время оба этих процесса, приводящих к выделению энергии, осуществлены, причём последний лежит в основе современной ядерной энергетики , а первый находится в стадии разработки.

Детальные исследования показали, что устойчивость ядер также существенно зависит от параметра N / Z {\displaystyle N/Z} - отношения чисел нейтронов и протонов. В среднем для наиболее стабильных ядер N / Z ≈ 1 + 0.015 A 2 / 3 {\displaystyle N/Z\approx 1+0.015A^{2/3}} , поэтому ядра лёгких нуклидов наиболее устойчивы при N ≈ Z {\displaystyle N\approx Z} , а с ростом массового числа всё более заметным становится электростатическое отталкивание между протонами, и область устойчивости сдвигается в сторону N > Z {\displaystyle N>Z} (см. поясняющий рисунок ).

Если рассмотреть таблицу стабильных нуклидов, встречающихся в природе, можно обратить внимание на их распределение по чётным и нечётным значениям Z {\displaystyle Z} и N {\displaystyle N} . Все ядра с нечётными значениями этих величин являются ядрами лёгких нуклидов 1 2 H {\displaystyle {}_{1}^{2}{\textrm {H}}} , 3 6 Li {\displaystyle {}_{3}^{6}{\textrm {Li}}} , 5 10 B {\displaystyle {}_{5}^{10}{\textrm {B}}} , 7 14 N {\displaystyle {}_{7}^{14}{\textrm {N}}} . Среди изобар с нечётными A, как правило, стабилен лишь один. В случае же чётных A {\displaystyle A} часто встречаются по два, три и более стабильных изобар, следовательно, наиболее стабильны чётно-чётные, наименее - нечётно-нечётные. Это явления свидетельствует о том, что как нейтроны, так и протоны, проявляют тенденцию группироваться парами с антипараллельными спинами , что приводит к нарушению плавности вышеописанной зависимости энергии связи от A {\displaystyle A} .

Таким образом, чётность числа протонов или нейтронов создаёт некоторый запас устойчивости, который приводит к возможности существования нескольких стабильных нуклидов, различающихся соответственно по числу нейтронов для изотопов и по числу протонов для изотонов. Также чётность числа нейтронов в составе тяжёлых ядер определяет их способность делиться под воздействием нейтронов .

Ядерные силы

Ядерные силы - это силы, удерживающие нуклоны в ядре, представляющие собой большие силы притяжения, действующие только на малых расстояниях. Они обладают свойствами насыщения, в связи с чем ядерным силам приписывается обменный характер (с помощью пи-мезонов). Ядерные силы зависят от спина, не зависят от электрического заряда и не являются центральными силами .

Уровни ядра

В отличие от свободных частиц, для которых энергия может принимать любые значения (так называемый непрерывный спектр), связанные частицы (то есть частицы, кинетическая энергия которых меньше абсолютного значения потенциальной), согласно квантовой механике , могут находиться в состояниях только с определёнными дискретными значениями энергий, так называемый дискретный спектр. Так как ядро - система связанных нуклонов, оно обладает дискретным спектром энергий. Обычно оно находится в наиболее низком энергетическом состоянии, называемым основным . Если передать ядру энергию, оно перейдёт в возбуждённое состояние .

Расположение энергетических уровней ядра в первом приближении:

D = a e − b E ∗ {\displaystyle D=ae^{-b{\sqrt {E^{*}}}}} , где:

D {\displaystyle D} - среднее расстояние между уровнями,