Пожарная сигнализация. Основные методы контроля шлейфа сигнализации Что такое радиальный шлейф

14.06.2019 Котлы

Охрана и управление домом.

Беспроводные системы охранно-пожарной сигнализации LifeSOS.

Беспроводная система охранно-пожарной сигнализации LifeSOS SCIENTECH ELECTRONICS (Тайвань)- это система охраны и управления домом. Система предназначена для обнаружения проникновения и пожара. Также она может управлять освещением и другими электрическими устройствами в вашем доме и имеет целый ряд удобных сервисных функций. Центральным блоком системы охранно-пожарной сигнализации является контрольная панель LS-30. Беспроводная система LifeSOS - это наиболее оптимальное решение для охраны дач, коттеджей, квартир, офисов и управления домом.

Основные достоинства беспроводной системы охранно-пожарной сигнализации и управления домом LifeSOS:

1. Доступная цена;

2. Стильный дизайн;

3. Простота установки;

4. Максимально упрощённый процесс программирования и настройки;

6. Удобное и простое управление постановкой/снятием с охраны;

7. Защита оконных и дверных проемов, стеклянных поверхностей;

8. Раннее обнаружение возгорания;

9. Обнаружение нарушителя в охраняемой зоне;

10. Передача сообщений по телефонным линиям, радиоканалу и Internet;

11. Интеграция в "умный дом" и управление коммуникациями;

12. Дистанционное управление освещением и другими электрическими бытовыми устройствами;

13. Контроль температуры, влажности и загазованности окружающей среды с помощью температурных датчиков, которые отсутствуют у аналогичных систем охранно-пожарной сигнализации. Данные, полученные от датчика, используются для управления исполнительными устройствами систем домашней автоматики;

14. Контроль прихода домой детей, наблюдение за маленькими детьми, пожилыми и больными людьми. Вызов экстренной помощи;

15. Создание в доме эффекта присутствия хозяина, включение электроприборов по расписанию;

Шлейф сигнализации (ШС) – одна из составных частей объектовой системы охранно-пожарной сигнализации. Это проводная линия, электрически связывающая выносной элемент (элементы), выходные цепи охранных, пожарных и охранно-пожарных извещателей с выходом приемно-контрольных приборов. Шлейф охранно-пожарной сигнализации – это электрическая цепь, предназначенная для передачи на приемно-контрольный прибор тревожных и служебных сообщений от извещателей, а также (при необходимости) для подачи на извещатель электропитания. ШС состоит обычно из двух проводов и включает в себя выносные (вспомогательные) элементы, устанавливаемые в конце электрической цепи. Эти элементы называются нагрузкой или оконченным резистором ШС.



Рассмотрим двухпроводный ШС. В качестве примера на рисунке 2.4 изображен комбинированный пожарный ШС с нагрузочным R н на конце.

Рис. 2.4 Комбинированный пожарный ШС с нагрузочным R н на конце

Кроме нагрузочного сопротивления имеются ряд факторов, создающий добавочную нагрузку в цепи ШС – это эквивалентное сопротивление самих проводов ШС, сопротивление «утечки» между проводами ШС и между каждым проводником шлейфа и «землей». Допустимые предельные значения этих параметров при эксплуатации указываются в технической документации на конкретный прибор. Вход ШС подсоединяется к элементам приемно-контрольного прибора.

ШС является одним из наиболее «уязвимых» элементов объектовой системы охранно-пожарной сигнализации. Он подвержен воздействию различных внешних факторов. Основной причиной неустойчивой работы системы является нарушение ШС. В процессе работы может произойти отказ в виде обрыва или короткого замыкания ШС, а также самопроизвольное ухудшение его параметров. Возможно умышленное вмешательство в электрическую цепь шлейфа с целью нарушения его правильного функционирования (саботаж). В местах соединения ШС, его крепления и прокладки могут образовываться «утечки» тока между проводами и проводниками на «землю». На сопротивление «утечки» большое влияние оказывает наличии влаги. Например, в помещениях с повышенной влажностью сопротивление между проводами достигает нескольких кОм.

Рассмотрим наиболее распространенные методы ШС:

С описанием ШС постоянным током, используемым в качестве выносного элемента резистором;

С электропитанием ШС знакопеременным импульсным напряжением и используемым в качестве нагрузки последовательными соединенными резисторами и полупроводниковым диодом;

С электропитанием ШС пульсирующим напряжением и используемым в качестве выносного элемента – конденсатора.

Метод контроля с электропитанием его постоянным током подразумевает непрерывных контроль входного сопротивления шлейфа сигнализации. На рисунке 2.5 дана схема типового узла контроля приемно-контрольного прибора. В узле контроля ШС входное сопротивление определяется по значению амплитуды аналогового сигнала U к, снимаемого с плеча делителя, который образуется ШС с входным сопротивлением R вх и измерительным элементом – резистором – R и:

U = U п R вх / (R вх + R и)

Рис. 2.5. Схема типового узла контроля приемно-контрольного прибора.

На выходе аналогово-цифрового преобразователя (АЦП) устанавливается

Два порога напряжения, соответствующие верхней и нижней границам зоны разрешенных значений входного напряжения ШС. В процессе эксплуатации и изменений сопротивления ШС и сопротивления «утечки» входное сопротивление ШС не должно выходить за пределы допустимых значений. Так как точное значение порога может быть установлено только с некоторой погрешностью, определяемой технологическим разбросом R и и погрешностью АЦП, то в данном случае под допустимым значением подразумевается верхняя и нижняя пороговые зоны. При достижении R и верхнего (что соответствует обрыву ШС) или нижнего порога (что соответствует короткому замыканию проводников ШС) прибор должен переходить с тревожный режим работы. Оптимально выбранным считается значение выносного резистора (нагрузочного сопротивления), при котором обеспечивается контроль ШС с заданными параметрами и формирование извещения «Тревога» при срабатывании извещателя, установленного в этот ШС.

2.5. Основные технические параметры и конструктивные особенности ППК.

Общая функциональная схема прибора приемно-контрольного охранно-пожарного дана на рисунке 2.6.

Рис. 2.6 Общая функциональная схема прибора приемно-контрольного охранно-пожарного

ШС вместе с охранными или пожарными извещателями подключается к блоку контроля, который осуществляет электропитание и контроль ряда параметров, прежде всего амплитуды контролируемых электрических сигналов, а также их временных характеристик. Это позволяет выделить сигнал при срабатывании извещателя или нарушении нормального состояния шлейфа (его обрыв или короткое замыкание) и отличить его от помех. Если контролируемые параметры ШС превышают установленные пороговые значения, то на выходе блока контроля формируется нормируемый сигнал. Он поступает в блок обработки, где осуществляется логический анализ и формирование выходных сигналов, управляющих блоком включения оповещателей, параметры формируемых извещений. Блок включения оповещателей управляет непосредственно оповещателями, включая их в непрерывный или мигающий режим работы в течение неопределенно долгого или установленного интерфейсом интервалом.

Одним из основных устройств, для нормального функционирования ПКП, является источник электропитания (ИЭП). Он может быть встроенным в прибор, а иногда ПКП подключается к отдельному ИЭП. В некоторых приборах осуществляется непрерывный контроль напряжения электропитания и формирование сигнала при уменьшении его ниже установленного значения. При отключении напряжения основного электропитания (электропитание от сети переменного напряжения) и переходе на резервное электропитание прибор не должен формировать тревожное извещение, но должен отобразить пропадание электросети.

Основные параметры приборов ППКОП определенны в нормативных документах, в том числе и в действующих ГОСТах и НПБ, это такие как:

Соединение «прибор - ШС»;

Соединение «прибор – оповещатели»;

Соединение «прибор – линия пульта центрального наблюдения»;

Соединение «прибор – ИЭП».

Параметры соединения «прибор – шлейф сигнализации» определяет возможность совместной работы прибора с извещателями, включенными в шлейф,

их электропитание (при необходимости), а также достоверную передачу информации при тревожном срабатывании от извещателя к прибору. Установлен следующий ряд номиналов сопротивлений шлейф без учета сопротивления нагрузочного элемента, при фиксированной утечке между проводами ШС и между каждым проводом и «землей»: 0,1;0,15;0,27;0,33;0,47;0,68; 1,0кОм. При сопротивлении утечки не менее 20кОм максимальное значение сопротивления ШС в ряду 1,0кОм, а при сопротивлении утечки между проводами ШС не менее 50 и не более 0,47кОм. В выбранном диапазоне значений параметров ШС приборы должны сохранять работоспособность и находятся в дежурном режиме. Напряжение на входе шлейфа сигнализации в дежурном режиме работы должно быть от 18 до 27В. При срабатывании извещателя ток через его выходные цепи должен ограничиваться прибором и не превышать 20мА. Прибор должен переходить в режим «Тревога» в том случае, если длительности извещения (или срабатывание извещателя) составляет более 70мс, и должен оставаться в дежурном режиме при нарушении шлейфа длительностью менее 50мс. Регламентируется максимальное подключение извещателей определенного типа на один ШС. Расчет количества извещателей производится по сумме тока потребления всех извещателей, и ток потребления дожжен быть не выше нагрузочной способности каждого шлейфа.

Параметры соединения «прибор – оповещатели» регламентируют максимальную мощность подключаемых к прибору оповещателей. Для оповещателей, осуществляющих электропитание от сети переменного напряжения 220В частотой 50Гц, эта мощность должна быть не более 60В и обычно ограниченна устанавливаемым в приборе предохранителем. Приборы должны выдерживать аварийное включение таких оповещений 1 сутки. Для звуковых оповещателей с электропитанием от источника постоянного тока напряжением 12 и 24В (звонки, пьезоэлектрические сирены и др.) потребляемая электрическая мощность не должна превышать 750мВт. Развиваемое при этом оповещении (тревожный) режим звуковое давление на расстоянии 1 м должно быть не менее 85дБ.

Параметры соединения «прибор – источник электропитания» характеризует возможности основного и резервного электропитания прибора. Основным источником обычно является электрическая сеть переменного тока с действующим напряжением (220 ± 22) с частотой (50 ± 1) Гц. В качестве резервного источника электропитания обычно используют источник постоянного тока напряжением (12 ± 1,2) и (24±3)В. Минимальная длительность отключения электропитания, при котором прибор не формирует тревожного сообщения, при исправленном шлейфе сигнализации, должна быть не менее 250мс.

Параметры соединения «прибор – линия пульта центрального наблюдения» определяют возможность совместной работы прибора с системной передачи извещений. Прибор должен обеспечивать коммутацию цепей с максимальным напряжением 72В, максимальным током до 50мА. Длительность тревожного извещения, выдаваемая прибором для передачи на НЦП, не менее 2сек.

2.6. Номенклатура используемых приемно-контрольных приборов и основные виды.

В нашей стране интенсивное развитие приемно-контрольных приборов началось в середине шестидесятых годов прошлого века с появлением прибора «Сигнал». В качестве извещателей использовались омические извещатели типа «Фольга», тонкий медный провод, электромеханические контакты. Извещатели соединялись между собой и образовывали замкнутую электрическую цепь – ШС, который подключается к прибору. Далее появлялся ряд модификаций ПКП типа «Сигнал-2», « Сигнал-3», «Сигнал-3М», в которых применялись эффекты релейной автоматики.

В восьмидесятые годы основным направлением совершенствования приборов стало повышение их надежности и помехозащищенности. Значительным шагом в этом направлении явилась оптимизация времени задержки формирования сигнала тревоги. Это потребовало значительных доработок серийно выпускаемого оборудования и снятию некоторых с производства (не обеспечивали надежного контроля состояния объекта и передачи тревожного сообщения от извещателя по ШС).

В настоящее время широкое применение нашли приборы, изготовленные на базе интегральным микросхем, микроконтроллеров и аналогово-цифровых преобразователей. Многие приборы имеют управление по стандартному интерфейсу RS 485. Одним из таких приборов является «Сигнал 20», который может работать как автономно, так и в составе интегрированной системы охраны, управляемый по стандартному интерфейсу RS 485. В современных приборах широко используются цифровые методы обработки сигналов. Аналогово-цифровой преобразователь, снимающий сигнал с выхода ШС, преобразует его в кодированный импульсный сигнал, расширяя возможности обработки сигнала и повышая точность. Современные приборы с применением цифровых узлов, в отличие от аналоговые, легко воспроизводимы в крупносерийном производстве, более стабильны в эксплуатации и удобны при техническом обслуживании.

2.7. Приборы, пульты, приемные станции, и сигнально-пусковые устройства пожарной сигнализации.

Приемно-контрольные приборы и пульты предназначены для электропитания пожарных извещателей по шлейфам пожарной сигнализации, приема, тревожных извещений от пожарных извещателей, контроля пожарных шлейфов на обрыв и короткое замыкание, формирования извещений «Пожар» и «Неисправность», а также для печати этих извещений на ПЦН, формирования сигналов включения систем пожаротушения и дымоудаления. Номенклатура приемно-контрольных приборов велика. Приемно-контрольные пульты бывают следующих типов:

Приемно-контрольное охранно-пожарное устройство УП-КОП01041-10/50-1, «Топаз-1» контролирует от 10 до 50 охранно-пожарных ШС, оборудованных пассивными (контактными) охранными и пожарными извещателями.

Устройство обеспечивает: выдачу разделенных сигналов «Пожар», «Тревога», «Авария» на НЦП после размыкания нормально замкнутых контактов реле; формирование в процессе замыкания бесконтактных ключей адресных команд телеуправления установками АСП; автономную охрану помещения, в котором оно установлено (режим работы «Самоохрана»); управление выносными световыми и звуковыми оповещателями. При отключении основного электропитания от сети переменного тока напряжением 220В, устройство питается от резервного источника электропитания постоянного тока напряжением 24В, обеспечивающего ток не менее 1А.

Приемно-контрольный пульт ППК-2 и его модификации ППК-2А, ППК-2Б, ППК-2К предназначены для приема сигналов «Пожар», «Неисправность» от автоматических и ручных пожарных извещателей с нормально замкнутыми и нормально разомкнутыми контактами, а также от активных токопотребляющих пожарных извещателей типа «ДИП 212» или «ИП 212». Пульт осуществляет: отображение всей поступающей с охраняемых объектов информации (сигналы « Пожар», «Неисправность») с помощью световых индикаторов и звукового сигнализатора; трансляцию поступивших сигналов с помощью контактов реле на ПЦН; формирование адресных и обобщенных сигналов пуска АСПТ; контроль целостности линий пуска АСПТ; автоматический счет тревожных сигналов.

Сигнально-пусковые устройства – это те же приемно-контрольные приборы, которые дополнены возможностью: формировать извещение «Внимание» при срабатывании одного пожарного извещателя, извещение «Пожар» при срабатывании не менее двух пожарных извещателей; выдавать с регулируемой задержкой сигнала пуска систем пожаротушения; управления системами оповещения о пожаре.

Номенклатура сигнально-пусковых устройств разнообразна. Они бывают следующих типов:

Сигнально-пусковое пожарное устройство УСПП01041-4-2 «Сигнал–42-01» предназначено для: контроля состояния четырех ШС с включенными в них активными (токопотребляющими) и пассивными (работающими на замыкание или размыкание ШС) пожарными извещателями; формирования адресных команд; управления автоматическими средствами пожаротушения и дымоудаления (АСПТ). Осуществляет управление выносными оповещателями, передачи дублирующих извещателей «Пожар», «Внимание» и «Неисправность» на ПЦН.

Электропитание осуществляется от двух независимых источников питания переменного тока с напряжением 220В. При отсутствии основного электропитания, устройство автоматически переходит на резервное электропитание от аккумуляторной батареи.

Устройство сигнально-пусковое охранно-пожарное УСПОП 010412131249-8-1 «Роса–2 SL» предназначено для контроля состояния двух направлений с запуском систем пожаротушения и дымоудаления (по каждому направлению) при получении сигналов «Пожар» не менее чем от двух пожарных извещателей в одном шлейфе одновременно. Прибор управляет внешними звуковыми и световыми оповещателями. Применяется в системе пожарной и охранно-пожарной сигнализации, автоматического объемного пожаротушения и дымоудаления объектов. Устройство восстанавливаемое, контролируемое, многоразового действия, обслуживаемое и многофункциональное, и осуществляет прием и регистрацию извещений посредством контроля тока, протекающего в ШС. В качестве извещателей в шлейф могут быть включены:

Пожарные извещатели электронного типа;

Пожарные извещатели, имеющие на выходе контакты реле;

Активные пожарные извещатели дымового типа «ДИП-212» или «ИП-212».

В охранные и сигнальные шлейфы сигнализации могут включаться:

Извещатели электроконтактного типа;

Извещатели, имеющие на выходе контакты реле;

Сигнальные цепи активных охранных приборов.

Прибор осуществляет передачу извещений «Неисправность», «Внимание», «Пожар» на ПЦН с помощью сигнальных реле. Он осуществляет электропитание от сети переменного тока напряжением 220В частотой 50Гц. При пропадании светового электропитания прибор автоматически переходит в работу от встроенного аккумулятора, обеспечивающего нормальную работу в течении 24 часов в дежурном режиме и в течении 3-х часов в режиме «Пожар». Ток потребления прибора от встроенного аккумулятора в дежурном режиме не более 100 мА. Контроль и подзарядка встроенного аккумулятора осуществляется автоматически.

2.8. Системы передачи извещений охранно-пожарной сигнализации.

Назначение системы передачи извещений (СПИ) – охрана ряда рассредоточенных объектов с использованием, в качестве каналов передачи извещений, линий городской телефонной сети или радиоканала. Системы передачи извещений о несанкционированном доступе и пожаре являются разновидностью телемеханических систем, то есть технических средств, предназначенных для контроля и управления объектами на расстоянии с применением специальных преобразователей сигналов для эффективного использования каналов связи.

2.8.1. Классификация и общие требования к адресным системам пожарной сигнализации.

Нормативные документы (НПБ 58 – 97 « Системы пожарной сигнализации адресные. Основные технические требования. Методы испытаний.») устанавливают: классификацию, общие технические требования и методы испытаний адресных систем пожарной сигнализации (АСПС), применяемых на территории России, и предназначенных для обнаружения загорания в помещениях различных зданий и сооружений с указанием номера пожарного извещателя, от которого поступило извещение о пожаре.

Классифицируются АСПС по следующим параметрам:

Максимальное количество подключаемых адресных пожарных извещателей (АПИ) (три категории);

Способ передачи информации о пожарной ситуации в защищаемых помещениях АСПС (подразделяется на аналоговые, дискретные и комбинированные).

Условные обозначения АСПС должно состоять из аббревиатуры наименования и трех цифр, разделенных дефисом. Первая группа цифр означает регистрационный номер АСПС, который присваивается при регистрации изделия. Первая цифра второй группы обозначает категорию АСПС по максимальному количеству подключаемых АПИ: 1 означает до 128 подключаемых АПИ; 2 – от 129 до 512 АПИ; 3 – свыше 512 АПИ. Вторая цифра второй группы обозначает способ передачи информации о пожароопасной ситуации в защищаемом помещении. Цифре 1 соответствует дискретный способ с принятием решения о пожаре (да; нет) 2 – аналоговый способ, при котором АПИ, передает количественную характеристику контролируемого фактора пожара в адресный прибор (АППК); 3 – комбинированный или иной способ передачи информации и принятия решения о возникновении пожара. Первая цифра третьей группы обозначает наличие или отсутствие в АСПС дымовых АПИ: 0 – отсутствие дымовых АПИ; 1– наличие дымовых оптических АПИ; 2 – наличие радиоизотопных дымовых;

3 – наличие оптических и радиоизотопных дымовых АПИ; 4 – наличие дымовых АПИ или иного принципа действия; 5 – наличие иных комбинаций дымовых АПИ. Вторая цифра третьей группы обозначает наличие или отсутствие в АСПС тепловых АПИ: 0–отсутствие тепловых АПИ; 1 – наличие тепловых АПИ максимального действия; 2 – наличие тепловых АПИ максимального дифференциального действия; 3 – наличие тепловых АПИ и АПИ максимального и максимально дифференциального действия; 4 – наличие тепловых АПИ, совмещенных с АПИ другого типа; 5 – наличие иной комбинации тепловых АПИ. Третья цифра третей группы обозначает наличие или отсутствие в АСПС ручных АПИ: 0 – ручные АПИ отсутствуют; 1 – наличие ручных АПИ. Четвертая цифра третей группы обозначает наличие или отсутствие в АСПС АПИ пламени: 0–АПИ пламени отсутствуют; 1 –наличие АПИ пламени, реагирующие на излучении открытого пламени в инфракрасном диапазоне спектра; 2 – наличие АПИ пламени, реагирующие на излучении открытого пламени в инфракрасном диапазоне спектра; 2 – наличие АПИ, реагирующие на излучение открытого пламени в ультрафиолетовом диапазоне спектра; 3 – наличие АПИ пламени, реагирующие на излучение открытого пламени в ином диапазоне спектра.

Технические требования к АСПС должны соответствовать требованиям НПБ 58 – 97 и техническим условиям на конкретную АСПС, введенных в установленном порядке и согласованных с ГПС. При использовании конкретного АСПС необходимо иметь сертификат качества на данное изделие. Это гарантирует соответствие данного изделия нормам НПБ 58 – 97 по техническим требованиям.

В комплект поставки АСПС должны входить необходимые комплектующие детали, нестандартный инструмент и текстовая эксплуатационная техническая документация, обеспечивающая ее монтаж, проведение пусконаладочных работ и эксплуатацию.

2.8.2. Принцип действия и область применения систем передачи извещений.

Системы передачи извещений состоят:

Из объектового оконченного устройства (УО) – части СПИ, устанавливаемой на охраняемом объекте для приема извещений от ППКОП, преобразования сигнала и передачи его по каналам связи на ретранслятор, а также (при наличии канала обратной связи) для приема от ретранслятора команд телеуправления. Оконечное устройство является составной частью систем ОПС СПИ;

Ретранслятора – составной части СПИ, установленной в промежуточном пункте между охраняемыми объектами и пунктом централизованной охраны (ПЦО) или на самом охраняемом объекте. Он предназначен для приема извещений от УО или от других ретрансляторов, преобразования сигналов и их передачи на другие ретрансляторы, пультовые оконечные устройства или пульт центрального наблюдения, а также (при наличии обратного канала) для приема от пультового оконечного устройства, ПЦН или других ретрансляторов и передачи на УО или другие ретрансляторы команд управления;

Пультового устройства оконечного (ПУО) – составной части СПИ, устанавливаемой в ПЦО для приема извещений от ретрансляторов, их преобразования и передачи на ПЦН, а также (при наличии обратного канала связи) для приема от ПЦН и передачи на ретрансляторы и УО команд телеуправления;

Пульта центрального наблюдения (ПЦН) – самостоятельные технические средства (совокупность технических средств) или составной части СПИ, устанавливаемой в ПЦО, для приема от ПУО или ретрансляторов извещений о проникновении на охраняемые объекты и пожаре на них, служебных и контрольно-диагностических извещений, обработки, отображения и регистрации полученной информации и представления ее в заданном виде для дальнейшей обработки. А также (при наличии обратного канала связи) для передачи через ПЦО на трансляторы или УО команд телеуправления.

Центральный комплекс средств охраны обычно используют станционную и линейную аппаратуру городской телефонной сети (ГТС) или может быть организован, при помощи СПИ с использованием телефонных линий в качестве каналов связи, переключаемых на период охраны и занятых

Любая СПИ должна состоять из двух подсистем (выполнять две функции):

Подсистема телесигнализации, осуществляющая передачу информации в виде извещений телесигнализации (ТС) о состоянии контролируемых объектов;

Подсистемы теле-радиоуправления, осуществляющей передачу информации в виде команд телеуправления (ТУ), при этом необходимо иметь обратную сигнализацию о результатах выполнения команды телеуправления.

2.8.3. Основные технические параметры СПИ и их конструктивные особенности.

Основными техническими параметрами систем передачи извещений являются каналы связи (УО – ретранслятор, ретранслятор – ретранслятор, ретранслятор – ПЦН); информационная емкость системы (базового комплекта и максимальная структура системы; время регистрации извещения от тревоге напряжение электропитания и потребляемая мощность пульта центрального наблюдения и ретранслятора.

Структура системы передачи на НЦП может быть:

Радиальной, в которой устройство диспетчерского пункта соединено отдельным каналом связи с каждым устройством контролируемого пункта;

Радиально-цепочной, в которой устройство контролируемого пункта соединено одним каналом связи с устройством диспетчерского пункта и отдельным каналом связи с каждым из контролируемых объектов;

Древовидной, в которой одно из устройств контролируемого пункт, называемое ведущим, связано отдельными каналами с остальными устройствами контролируемого пункта, называемыми ведомыми, отдельным каналом связи с устройством диспетчерского пункта.

2.8.4. Периферийные устройства адресных систем пожарной сигнализации.

Периферийными считаются все устройства охранно-пожарной сигнализации (кроме извещателей), имеющие самостоятельное конструктивное исполнение и подключаемые к контрольной панели охранно-пожарной сигнализации через внешние линии связи. Наиболее часто используются следующие типы периферийных устройств охранно-пожарной сигнализации:

пульт управления применяется для управления устройствами охранно-пожарной сигнализации из локальной точки объекта;

модуль изоляции коротких замыканий используется в кольцевых шлейфах охранно-пожарной сигнализации для обеспечения их работоспособности в случае короткого замыкания;

модуль подключения неадресной линии для контроля неадресных извещателей охранно-пожарной сигнализации;

релейный модуль для расширения функции оповещения и управления контрольной панели;

модуль входа/выхода для контроля и управления внешними устройствами (например, автоматическими установками пожаротушения и дымоудаления, технологическим, электротехническим и другим инженерным оборудованием);

звуковой оповещатель для оповещения о пожаре или тревоге в требуемой точке объекта с помощью звуковой сигнализации;

световой оповещатель для оповещения о пожаре или тревоге в требуемой точке объекта с помощью световой сигнализации;

принтер сообщений для печати тревожных и служебных системных сообщений.

Периферийные устройства контролируются и диагностируются центральной станцией (пультом контроля и управления, панелью, блоком под конфигурацию конкретного объекта, делится на определенные зоны и осуществляют взаимосвязь с конкретными извещателями в этих зонах. Каждой зоне присваивается определенное обозначение и задается периферийное устройство, на которое будет действовать сигнал тревоги из данной зоны. Исполнительные устройства позволяют управлять системой светового и звукового оповещения; управлением вентиляцией, дымоудалением, пожаротушением, лифтами и т.д. Все сигналы управления от этого блока передаются на центральный ПКУ и контролируются с него. Кроме вышеуказанных систем, к пульту ПКУ может подключаться компьютер, принтер, имеется выход для связи нескольких систем в локальную сеть мощной системы сигнализации (интегрированная система охраны «Орион» С2000). С помощью компьютера можно осуществлять управление системой и ее программирование. На мониторе компьютера отображается графический план объекта с расположением всех извещателей и периферийных устройств, а с помощью клавиатуры или «мыши» изменяются параметры системы и опрашиваются состояние любого устройства, входящего в систему.

2.9. Оповещатели и устройства коммутации.

Оповещатели предназначены для подачи звуковых и световых сигналов тревоги, привлечения внимания персонала охраны. Они подразделяются на световые и звуковые. Напряжение электропитания, потребляемая мощность оповещателей должны соответствовать аппаратуре ОПС, совместно с которой они работают.

2.9.1. Световые и звуковые оповещатели.

В качестве световых оповещателей используются лампы накаливания, светодиоды и импульсные газоразрядные источники света. Газоразрядные лампы позволяют получать высокую интенсивность светового потока при малом токе потребления.

Световые оповещатели устанавливаются в местах, удобных для визуального контроля: в межвитринных и межоконных пространствах, тамбурах входных дверей и т.п. Для примера рассмотрим световой оповещатель О12-1 «Маяк-1», предназначенный для установки внутри охраняемого помещения (витрина, окно) и рассчитанный на круглосуточную работу. Оповещатель обеспечивает световое оповещение о состоянии охраняемого объекта. Электропитание оповещателя (напряжением 220В переменного тока или 12В постоянного тока) осуществляется от приемно-контрольного прибора. Включение и выключение оповещателя осуществляется коммутацией контактов реле «220В» или «12В» приемно-контрольного прибора. Оповещатель следует располагать в месте, где отсутствует воздействие прямого солнечного света, иначе контрастность свечения оповещателя резко снижается.

В качестве звуковых оповещателей применяются звуковые излучатели различных принципов действия: электромагнитные (сирены, звонки); электродинамические (громкоговорители); пьезоэлектрические. Наиболее экономичными и эффективными являются пьезоэлектронные оповещатели, которые позволяют получать уровень звукового давления от 90 до 110дБ при напряжении электропитания 12В и токе примерно от 60 до 200мА. Звуковые оповещатели устанавливаются на наружных стенах фасада зданий на высоте не менее 2,5м от уровня земли; в помещениях их устанавливают в местах, удобных для контроля персоналом охраны и не доступных посторонним лицам.

Нежелательно устанавливать мощные звуковые оповещатели в коридорах спальных комнат, в санаториях, жилых помещений в общежитиях, так как при тревоге в ночное время звуковое оповещение может создать панику. В описанных объектах звуковое оповещение необходимо располагать вблизи комнаты охранного или дежурного персонала, чтобы они в момент пожарной тревоги могли организовать эвакуацию без паники.

Звуковой оповещатель «Свирель» предназначен для подачи мощных низкочастотных сигналов с высокой различимостью на фоне акустических шумов. Его используют в отапливаемых и не отапливаемых помещениях, а так же в системах охраны транспортных средств (в салоне). Он является самым экономичным оповещателем. Электропитание осуществляется от источника постоянного тока напряжением 12В при малом энергопотреблении. Оптимальное расположение в зоне видимости.

Звуковой оповещатель «Дека» предназначен для подачи мощных звуковых низкочастотных сигналов с высокой различимостью на фоне акустических шумов;

Используется в отапливаемых и не отапливаемых больших помещениях, на улице.

А также в системах охраны транспортных средств (под капотом). Электропитание осуществляется от источника постоянного тока напряжением 12В. Оптимальное расположение в зоне прямой видимости.

Световые и звуковые оповещатели могут быть в комбинированном исполнении (в одном устройстве и световой и звуковой оповещатель.) Таким устройством является «ССУ–1», предназначен для звукового и светового оповещения в охранно-пожарной сигнализации. Возможна как внутренняя, так и внешняя установка оповещателя при условии, что диапазон рабочих температур лежит в пределах от –30 до + 50ºС. Прибор устанавливается на стенах или других конструкциях охраняемого объекта. Электропитание прибора осуществляется от источника постоянного тока напряжением 12В раздельно звукового и светового оповещателей. Входы оповещателя соответственно соединяются с выходами ППКОП.

Для щадящего режима оповещения о тревоги применяются световые сигнальные устройства со звуковым сигнализатором типа «БЛИК-3С – 12», который предназначен для использования в качестве информационных указателей, вывесок, табло («Выход», «Пожар», и т.д.) устанавливаемых внутри помещений. Обычно табло с надписью «Выход» устанавливается в проходах и выходах, вначале коридора и на запасных выходах в конце коридора. Табло с надписью «Пожар может устанавливается рядом с табло «Выход» или отдельно на видном месте, оповещая о пожаре светом и звуком. Электропитание осуществляется от источника электропитания напряжением 12В, одновременно подается и на звуковую и на световую часть.

2.9.2. Устройства коммутации.

Коммутационные устройства – служат для электрических соединений ТС ОПС в системах и комплексах ОПС.

Устройство коммутационное УК–1 предназначено для коммутаций выходного контакта исполнительного реле извещателя на два независимых направления с визуальным контролем его состояния и применяют для организации передачи тревожных сообщений от извещателя на внутренний пост охраны объекта и в ПЦО. Устройство размещают только в помещении, где есть охранный извещатель. Схема соединений дана на рисунке 2.7.

Номенклатура коммутационных устройств разнообразна: УК – ВК/2 (имеет в своем составе два коммутационных реле), УК – ВК / 4 (имеет в своем составе четыре коммутационных реле).

Рис. 2.7. Схема соединений коммутационного устройства УК–1.

К устройствам коммутации относятся так же коммутационные коробки разветвительные. Коробки разветвительные коммутационные слаботочные КС-2, КС-3, КС-4, КС-Ф предназначены для монтажа ТС ОПС, а также в других низковольтных цепях переменного и постоянного тока напряжением до 80В.

Устройства соединительные коммутационные слаботочные УС3-2, УС4-2, УС4-4 предназначены для организации гибких переходов при блокировке подвижных строительных конструкций: окон, фрамуг, дверей, люков и т.д. Параметры гибких элементов УС2-4 и УС4-4 следующие: максимальная длина 200мм, внешний диаметр 7мм, минимальное количество нагрузочных циклов 2000.

3. Лабораторная работа “Охранно-пожарная сигнализация”.

3.1. Назначение учебного лабораторного стенда-имитатора “Охранно-пожарная сигнализация”.

Учебно-лабораторный стенд-имитатор “Охранно-пожарная сигнализация” предназначен для наглядного представления аппаратных и технических средств системы охранно-пожарной сигнализации, для демонстрации конструктивных элементов системы, для демонстрации состояния системы при особых случаях и различных видах неисправности.

Работа со стендом возможна в трех режимах:

· режим обучения;

· рабочий режим;

· аварийный режим.

Режим обучения заключается в визуальной демонстрации на стенде аппаратных и технических средств системы ОПС, способов подключения извещателей и оповещателей к прибору контроля и управления, демонстрации их работы в различных режимах с имитацией разных видов неисправностей.

Рабочий режим позволяет продемонстрировать работу системы при различных тактиках охраны и при различных состояниях системы. Возможна демонстрация ограничения доступа к элементам системы, демонстрация постановки объектов на охрану, снятие объекта с охраны, демонстрация ряда дежурных режимов (централизованная охрана, пожарная охрана, комбинированная охранно-пожарная система).

Аварийный режим позволяет продемонстрировать состояние системы при различных неисправностях.

Возможна имитация состояния системы в следующих случаях:

· обрыв линии связи;

· короткое замыкание на линии связи;

· невозможность постановки объекта на охрану;

· ложное срабатывание;

· отсутствие срабатывания;

· отсутствие светового оповещения;

· отсутствие звукового оповещения;

· отсутствие питания в сети;

· неисправность датчика.

3.2. Устройство стенда-имитатора “Охранно-пожарная сигнализация”.

Стенд состоит из модулей. Каждый модуль представляет собой функционально законченный элемент. Модули имеют клеммы для питания и передачи сигналов, средства имитации срабатывания и имитации неисправности. Между собой модули коммутируются с помощью проводов со штекерными разъемами. Различные варианты подключения модулей позволяют продемонстрировать большое число схем организации охранно-пожарных систем.

И. Неплохов, к.т.н., технический директор по ПС компании ADT/Tyco

ЧАСТЬ 1

Отсутствие классификации шлейфов пожарной сигнализации и линий связи в системах пожарной автоматики в отечественных нормах является существенным недостатком, определяющим низкий уровень работоспособности систем пожарной сигнализации, оповещения и систем противопожарной защиты. Принципы построения пороговых, многопороговых и адресно-аналоговых шлейфов уже неоднократно обсуждались в отраслевой печати , однако повышение нормативных требований в части обеспечения работоспособности шлейфов и линий связи в условиях пожара привели к необходимости еще раз вернуться к этой теме.

Очевидно, что только использование огнестойкого кабеля FRLS и FRHF не обеспечивает существенного повышения работоспособности систем, отключение одного извещателя блокирует сигнал «ПОЖАР» от всех остальных извещате-лей в этом шлейфе. Какой толк от использования дорогостоящего кабеля с 3-часовой огнестойкостью при температуре 750° С, если подключенное к нему устройство сгорит через 5 минут после начала пожара и тем самым обеспечит обрыв или короткое замыкание линии связи.Требования по работоспособности неадресных и адресных шлейфов пожарной сигнализации, к сожалению, не претерпели никаких изменений в части обеспечения полной или хотя бы частичной работоспособности при обрыве или коротком замыкании шлейфов и линий связи. Правда, в новую версию ГОСТ Р 53325 , по-видимому, будут введены изоляторы короткого замыкания для кольцевых и радиальных шлейфов, но когда будут определены требования по их обязательному использованию и в каком виде - пока неизвестно.

С другой стороны в мануалах зарубежных неадресных приборов и адресных модулей неадресных подшлейфов определена возможность формирования и программирования различных стилей и классов шлейфов и линий связи, но методика их выбора с учетом наших нормативных требований не приводится. В первой части статьи в основном рассматривается классификация шлейфов по NFPA72 , а во второй части статьи будет проведен анализ технических характеристик адресных модулей неадресных подшлейфов и адресных модулей управления при программировании различных стилей и классов.

КЛАССЫ И СТИЛИ ШЛЕЙФА ПО NFPA72

Линии связи с исполнительными устройствами, с оповещателями, шлейфы сигнализации с пожарными извеща-телями и так далее могут быть только либо класса А, либо класса В. Шлейфы сигнализации и линии связи с исполнительными устройствами, которые при однократном обрыве либо не одновременно при однократном замыкании на землю любого проводника сохраняют возможность формирования сигнала тревоги от любого пожарного извещателя этого шлейфа или которые обеспечивают работу всех подключенных к той линии связи устройств, определяются как класс А.

Табл. 1. Классы и стили шлейфа с извещателями

Обрыв одного проводника

КЗ проводника на землю

КЗ проводников шлейфа

П - Пожар; Н - Неисправность; Н+П - Пожар при наличии неисправности

Шлейфы сигнализации и линии связи с исполнительными устройствами, которые в этих условиях обеспечивают передачу сигнала тревоги только от пожарных извещателей до места обрыва и не обеспечивают работоспособность устройств за местом обрыва или однократного замыкания на землю любого проводника шлейфа сигнализации или линии связи, определяются как класс В.

Причем при обрыве проводника шлейфа или линии связи либо при его замыкании на землю должен формироваться сигнал неисправности в течение 200 секунд. Никакие другие классы шлейфов с другими свойствами, например, которые не обеспечивают работу извещателей не только после места обрыва, но и до него, не классифицируются, и их использование в системах пожарной автоматики не допускается.

Шлейфы класса В подразделяются по стилю на А, В и С. Они все должны обеспечивать обнаружение неисправности при одиночном обрыве любого проводника шлейфа или одиночном его замыкании на землю. При коротком замыкании шлейфов стиля А и В формируется сигнал «Пожар», а у шлейфа стиля С формируется сигнал «Неисправность». В шлейфах стиля В и С неисправность типа одиночного замыкания проводника на землю не должна блокировать формирование сигнала «Пожар» (табл. 1).

Шлейфы класса А подразделяются по стилю на D и Ea. Они должны обеспечивать обнаружение неисправности при одиночном обрыве любого проводника шлейфа или одиночном его замыкании на землю. При коротком замыкании шлейфов стиля D формируется сигнал «Пожар», а у шлейфа стиля Ea формируется сигнал «Неисправность». В шлейфах стиля D и Ea неисправность типа одиночного обрыва проводника шлейфа или одиночного замыкания проводника на землю не должна блокировать формирование сигнала «Пожар» (табл. 1).

Таким образом, с учетом требований ГОСТ Р 53325 о контроле неисправности шлейфа не только при обрыве, но и при коротком замыкании, при программировании стиля шлейфа можно выбирать только стиль С для шлейфа класса В и стиль Ea для класса А. В шлейфах стиля А, В и D при коротком замыкании шлейфа будет формироваться ложный сигнал тревоги.

Чтобы была понятна техническая реализация при выполнении требований относительно шлейфов класса А и В, рассмотрим, какие рекомендации приведены в NFPA72 Приложение С по методике их тестирования.

ПРОВЕРКА ШЛЕЙФОВ РАЗЛИЧНЫХ КЛАССОВ И СТИЛЕЙ

Функционирование двухпроводных шлейфов класса В (стиль A, B и C) с пожарными дымовыми извещателями рекомендуется проверять следующим образом. Произвести разрыв шлейфа посредством извлечения извещателя из базы либо отключением проводника шлейфа. Активировать детектор дыма, который располагается между приемно-контрольным прибором и разрывом шлейфа, как это рекомендовано производителем данного типа извещателя. После этого установить снятый извеща-тель в базу или восстановить соединение шлейфа либо произвести и то и другое. Приемно-контрольный прибор должен проиндицировать неисправность после разрыва шлейфа и сформировать сигнал тревоги при активации извещателя, несмотря на наличие обрыва шлейфа. Необходимо отметить, что к классу В могут относиться как радиальные шлейфы (рис. 1а), так и кольцевые шлейфы (рис. 1б), при этом все извещатели, оставшиеся подключенными к выходу шлейфа сигнализации, должны быть в состоянии обнаружить пожар, а извещатели, расположенные за обрывом шлейфа, находятся в отключенном состоянии. Кольцевые шлейфы класса В образуются в неадресных пороговых системах при расположении оконечного элемента шлейфа в приемно-контрольном приборе. В этом случае имеется значительно более достоверная информация об изменении состояния шлейфа в процессе эксплуатации посредством анализа изменения напряжения на входе и на выходе шлейфа по сравнению с традиционным радиальным шлейфом с оконечным элементом в конце шлейфа.

Рис. 1. Шлейфы класса В (стиль А, В или С)

Рис. 2. Шлейф класса А (стиль D и E)

Функционирование двухпроводных шлейфов класса А (стиль D и Ea) с пожарными извещателями рекомендуется проверять следующим образом. Произвести разрыв проводника в средней части шлейфа посредством извлечения из-вещателя и отключения проводника от контакта базы. Активировать извещате-ли по обе стороны от разрыва шлейфа (рис. 2). После этого произвести сброс прибора в дежурный режим, восстановить соединение шлейфа и установить детектор. Затем повторить тест при замыкании любого проводника шлейфа на землю в месте, где производилось отключение извещателя. В обоих тестах должна сначала включаться звуковая и визуальная индикация неисправности, а затем индикация тревоги с последующим восстановлением. В отличие от кольцевого шлейфа класса В, кольцевой шлейф класса А при обнаружении обрыва преобразуется в 2 радиальных шлейфа, и все извещатели продолжают функционировать, несмотря на наличие неисправности. Это и проверяется при тестировании.

Аналогичным образом классифицируются линии связи с устройствами любого типа, использующиеся в пожарной автоматике. Для всех типов устройств, включенных в линии связи, сохраняется необходимость выполнения требования обеспечения работоспособности устройств, подключенных до обрыва линии связи у класса В, и сохранение работоспособности всех устройств независимо от их расположения относительно обрыва у класса А. Но для каждого отдельного типа устройств в зависимости от выполнения других требований при различных видах неисправности устройств определены различные стили, которые обозначаются различными буквами или цифрами. Например, линии связи с опо-вещателями класса В (рис. 3), кроме обязательного обеспечения работоспособности оповещетелей до обрыва линии связи, должны удовлетворять дополнительным требованиям, определенным для стиля W или для стиля Y. А линии связи с оповещателями класса А (рис. 4), кроме обеспечения работоспособности всех оповещателей до и после обрыва линии связи, должны удовлетворять дополнительным требованиям, определенным для стиля X или для стиля Z.

Рис. 3. Линии связи с оповещателями класса B стилей W и Y

Рис. 4. Линии связи с оповещателями класса А стилей X и Z

Принцип разделения на классы В и А также должен выполняться при использовании линий связи с устройствами различного типа. Например, на рисунке 5 показаны шлейфы с адресными и адресно-аналоговыми устройствами различного типа: извещателями и оповеща-телями. Радиальный шлейф класса В обеспечивает работоспособность всех устройств до обрыва шлейфа, а кольцевой класса А - всех устройств, причем и в дежурном режиме, и в режиме пожар, несмотря на наличие неисправности. В адресной системе, при отсутствии при опросе ответа от устройств за местом обрыва, производится переключение выходных цепей кольцевого шлейфа на работу в режиме двух радиальных шлейфов. Автоматически локализуется неисправность по распределению устройств между двумя образующимися радиальными шлейфами и определяется, между какими адресными устройствами произошел обрыв шлейфа.

Необходимо подчеркнуть, что приборы с линиями связи или шлейфами, не выполняющие требования для класса А или В, не классифицируются и не могут применяться в системах пожарной автоматики по NFPA72. Например, если при обрыве радиального шлейфа изве-щатели, оставшиеся подключенными к прибору, не в состоянии сформировать сигнал «ПОЖАР», воспринимаемый прибором на фоне неисправности, то такая система не выполняет требования для шлейфов класса В и не может эксплуатироваться, несмотря на работоспособность при отсутствии неисправности. Так и при обрыве кольцевого шлейфа в любом месте не допускается, чтобы хотя бы несколько устройств перестало функционировать в дежурном режиме или в режиме «Пожар».

Рис. 5. Шлейф с извещателями и оповещателями класса В

Рис. 6. Шлейф с извещателями и оповещателями класса А

ТРЕБОВАНИЯ ГОСТ Р 53325-2009

В нашей нормативной базе аналогичные требования по классификации шлейфов полностью отсутствуют, хотя, что очевидно, компенсировать низкую их отказоустойчивость установкой трех извещателей вместо одного невозможно. В ГОСТ Р 53325-2009 п. 7.2.1.1 есть требование, что ППКП должны обеспечивать «преимущественную регистрацию и передачу во внешние цепи извещения о пожаре по отношению к другим сигналам, формируемым ППКП». Несмотря на то что эта же формулировка присутствовала еще НПБ 75-98 прошлого века, на нашем рынке присутствует масса сертифицированных ППКП, у которых извещение о пожаре не регистрируется при наличии сигнала о неисправности шлейфа, даже если у него отключен оконечный резистор и все из-вещатели остаются подключенными к прибору и обнаруживают пожар, то сигнал «Пожар» блокируется.

Кольцевые адресные шлейфы, несмотря на их потенциальные преимущества по сравнению с радиальными неадресными, в нашем исполнении не всегда можно классифицировать по классу А. Методика проверки функционирования устройств при неисправности в наших нормативных документах отсутствует, и проверки на обеспечение работоспособности при обрыве шлейфа не проводятся. Кроме того, выходы петлевого шлейфа могут быть объединены на плате, и тогда одиночный обрыв шлейфа не обнаруживается прибором. Правда, если сечение кабеля выбирается минимальным, то при обрыве падение напряжения может быть значительным и большое количество адресных устройств перестает функционировать.

Иногда инсталляторы даже на зарубежных адресно-аналоговых приборах с раздельными выходами петлевого шлейфа запараллеливают их, чтобы «исключить» неисправность, которая возникает из-за значительного падения напряжения на шлейфе при малом сечении кабеля. Но при обрыве шлейфа эта ошибка проявляется в виде падения напряжения шлейфа ниже допустимой величины и отключения значительной части устройств.

Для наглядности рассмотрим отвлеченный пример: кольцевой шлейф с напряжением 20 В, длиной примерно 1 км, с суммарным током потребления адресных устройств порядка 100 мА. Суммарное сопротивление кабеля при сечении жил 0,2 мм2 составляет около 200 Ом. В предположении равномерного распределения устройств по длине шлейфа ток по каждому выходу запараллеленного шлейфа будет примерно равен 50 мА, и с учетом линейного изменения по шлейфу средний ток в каждой половине шлейфа можно считать по 25 мА. Соответственно, на расстоянии 500 м на сопротивлении 100 Ом напряжение упадет примерно на 2,5 В. То есть шлейф запитывается параллельно, и за счет этого получается сравнительно небольшое падение напряжения. А если отключить один из входов шлейфа от прибора, то средний ток шлейфа будет суммироваться и увеличится примерно до 50 мА. Соответственно, на всем протяжении шлейфа при сопротивлении 200 Ом падение напряжения увеличится в 4 раза и составит 10 В!

Рис. 7. Отказонеустойчивый шлейф

ТРЕБОВАНИЯ ФЗ №123 И ГОСТ Р 53316-2009

С другой стороны, мы уже более трех лет живем под действием Федерального закона №123 , где в Статье 82 однозначно сформулированы требования по обеспечению сохранения работоспособности в условиях пожара кабельных линий и электропроводки, систем противопожарной защиты, средств обеспечения деятельности подразделений пожарной охраны, систем обнаружения пожара, оповещения и управления эвакуацией людей при пожаре, аварийного освещения на путях эвакуации, аварийной вентиляции и проти-водымной защиты, автоматического пожаротушения, внутреннего противопожарного водопровода, лифтов для транспортировки подразделений пожарной охраны в зданиях и сооружениях в течение времени, необходимого для выполнения их функций и эвакуации людей в безопасную зону.

Для выполнения этого требования повсеместно начал использоваться огнестойкий кабель низкодымный FRLS и даже бездымный и безгалогенный FRHF с огнестойкостью более 3 часов. Однако достаточно скоро выяснилось, что огнестойкость такого кабеля не обеспечивается, если отсутствует механическое крепление при воздействии высокой температуры. Соответственно, огнестойкий кабель должен иметь огнестойкое крепление и уже не допускается, как раньше, класть его в гофре с креплением на полиэтиленовых дюбелях, которые моментально сгорают при температуре 750° С, что приводит к разрушению огнестойкого кабеля.

Был выпущен ГОСТ Р 53316-2009 , который определил методы испытаний кабельных линий, к которым предъявляются требования по сохранению работоспособности в условиях пожара. В этом ГОСТе дано определение кабельной линии: «линия, предназначенная для передачи электроэнергии, отдельных ее импульсов или оптических сигналов и состоящая из одного или нескольких параллельных кабелей с соединительными, стопорными и конечными муфтами (уплотнениями) и крепежными деталями, проложенная, согласно требованиям технической документации, в коробах, гибких трубах, на лотках, роликах, тросах, изоляторах, свободным подвешиванием, а также непосредственно по поверхности стен и потолков и в пустотах строительных конструкций или другим способом».

Но кабельные линии и электропроводки систем противопожарной защиты, средств обеспечения деятельности подразделений пожарной охраны, систем обнаружения пожара, оповещения и управления эвакуацией людей при пожаре, аварийного освещения на путях эвакуации включают в себя автоматические и ручные извещатели, звуковые и световые оповещатели и так далее, которые также должны сохранять если не работоспособность, то способность «передачи электроэнергии». По сути они являются «соединительными... муфтами» и должны также испытываться по ГОСТ Р 53316-2009 в составе кабельной линии.

Как можно считать выполненными требования Технического регламента при применении огнестойкого кабеля, если в помещении, где возник очаг пожара, через несколько минут сгоревший оповещатель закоротит или оборвет линию связи и отключит все остальные оповещатели, не дождавшись эвакуации людей в безопасную зону? Сгоревший извещатель может заблокировать формирование сигнала «Пожар» до того времени, как закончится процедура его перепроверки путем сбросов и ожиданий подтверждений от других изве-щателей.Одно из возможных решений этой проблемы - использование кольцевых шлейфов и линий связи при конструктивном обеспечении отсутствия короткого замыкания терминалов устройств при пожаре и при включении изоляторов короткого замыкания шлейфа (рис. 8). Вполне возможно, что существуют и более оптимальные решения данной проблемы. Очевидно, достоверную оценку правильности выбранных решений можно будет определить посредством анализа результатов «натурных испытаний» систем в условиях пожаров, которых, к сожалению, у нас в избытке.

ЧАСТЬ 2

​В первой части статьи, опубликованной е № 5 журнала «Алгоритм безопасности» за 2012 год, была рассмотрена зарубежная классификация шлейфов пожарной сигнализации и линий связи в системах пожарной автоматики . Во второй части статьи рассматривается техническая реализация шлейфов разных классов и стилей. Приведены электрические параметры радиальных шлейфов класса В стиля С, обеспечивающие работоспособность извещателей до места обрыва шлейфа и кольцевых шлейфов класса А стилей D и Е, обеспечивающих работоспособность извещателей до и после обрыва. Использование шлейфа стиля D позволяет различать сработку автоматических и ручных пожарных извещателей.

В заключении к первой части статьи было сказано, что отсутствие классификации шлейфов в отечественных нормах является существенным недостатком, определяющим низкий уровень работоспособности систем пожарной сигнализации, оповещения и систем противопожарной защиты. Действительно, к какому стилю и классу можно отнести шлейфы отечественных приемно-контроль-ных приборов? Может быть, у нас и так все прекрасно? Отнюдь, нормативные требования за последнее время изменились не раз, много дополнительных требований было введено для повышения работоспособности систем пожарной автоматики в условиях пожара. В Техническом регламенте о требованиях пожарной безопасности Статья 82. пункт 2 сказано: «Кабельные линии и электропроводка систем противопожарной защиты, средств обеспечения деятельности подразделений пожарной охраны, систем обнаружения пожара, оповещения и управления эвакуацией людей при пожаре, аварийного освещения на путях эвакуации, аварийной вентиляции и противодымной защиты, автоматического пожаротушения, внутреннего противопожарного водопровода, лифтов для транспортировки подразделений пожарной охраны в зданиях и сооружениях должны сохранять работоспособность в условиях пожара в течение времени, необходимого для выполнения их функций и эвакуации людей в безопасную зону».

Для выполнения этого требования в линиях связи и шлейфах пожарной сигнализации стал применяться огнестойкий кабель FRLS и FRHF, но его обрыв все так же переводит шлейф в режим «Неисправность», и сигналы «Пожар» от пожарных извещате-лей блокируются практически во всех отечественных пожарных приборах. Требований по сохранению работоспособности линий связи и шлейфов с извещателями и опове-щателями в условиях пожара не появилось. Зарубежный опыт обеспечения полной (класс А) и частичной (класс В) работоспособности шлейфов пожарной сигнализации при обрыве также не используется. В новой версии ГОСТ Р 53325 , как и в НПБ 75-98, указано, что ППКП должен обеспечивать всего лишь «преимущественное отображение и передачу во внешние цепи извещения о пожаре по отношению к другим сигналам, формируемым ППКП». Четкое требование о недопустимости блокировки сигналов «Пожар» любыми другими сигналами в наших нормах отсутствует, и, соответственно, не используются технические решения, обеспечивающие выполнение этого требования.

У нас нет не только неадресных приборов с кольцевыми шлейфами класса А, но и радиальные шлейфы не укладываются в класс В стиля D. Зато практически все ППКП многопороговые, что определяет низкий уровень работоспособности даже при сохранении целостности шлейфа, не говоря уже о работе пожарных извещателей при обрыве шлейфа.

Недопустимо высокая вероятность ложных срабатываний дымовых пожарных из-вещателей из-за отсутствия защиты от электромагнитных помех, регулярного технического обслуживания и по многим другим причинам в результате привела к тому, что сигнал «Пожар» от пожарного извещателя перестал считаться таковым. Как это ни парадоксально, но уже для многих стало привычным, что теперь в отечественных системах пожарной сигнализации уже любой пожарный извещатель формирует только лишь сигнал «Внимание», а сигнал «Пожар» формируется объединенными усилиями двух пожарных извещателей.

Использование данной терминологии привело к выработке соответствующего алгоритма работы приемно-контрольных приборов. Примерный алгоритм функционирования отечественных приборов приведен в таблице 1. Сигнал «Внимание» от первого пожарного извещателя может быть заблокирован сигналом «Неисправность» с соответствующей реакцией на него. Хотя в условиях развития открытого очага пожара имеется высокая вероятность обрыва или короткого замыкания шлейфа до активизации второго пожарного извещателя. Защита от ложных сработок не может обеспечиваться за счет снижения уровня пожарной безопасности. Почему в охранных шлейфах не используются аналогичные способы защиты от ложных срабатываний? Нет ни сигналов «Внимание», ни двухпороговых шлейфов с минимум 3-мя охранными изве-щателями в помещении. Более того, при обрыве, при коротком замыкании шлейфа и даже всего лишь при изменении сопротивления шлейфа вполне логично формируется сигнал «Тревога». Возможно, вероятность кражи значительно выше, но отсутствие защиты от пожара создает реальную угрозу для населения, не говоря уже о несравнимых материальных потерях.

Возможно, у многих читателей, кто ознакомился с зарубежными требованиями по классификации пожарных шлейфов и линий связи, создалось впечатление, что это только теория. Что технически сложно обеспечить определение формирования пожарным извещателем сигнала «Пожар» при обрыве шлейфа. И что кольцевые шлейфы используются только в адресных системах, но уж никак не в традиционных неадресных.

Рассмотрим принципы построения шлейфов класса В стилей В, С и класса А стилей D, Е на примере многофункционального модуля неадресных подшлейфов DDM800 адресно-аналоговой пожарной системы Zettler (рис. 1). Этот модуль может быть запрограммирован для работы в различных режимах, в том числе может поддерживать два радиальных шлейфа класса В стиля С (короткое замыкание шлейфа определяется как неисправность), либо стиля В (короткое замыкание формирует сигнал «Пожар») (рис. 2), либо один петлевой шлейф класса А стиля Е (короткое замыкание шлейфа определяется как неисправность), либо стиля D (короткое замыкание формирует сигнал «Пожар») (рис. 3), с оконечными элементами в виде резисторов или стабилитронов, при использовании баз извещателей с диодами, и работать в режиме протокола 4-20 мА. Программируется различная длительность сброса извещателей и режим прерывания опроса без верификации или с верификацией с различным временем перепроверки подтверждения сигнала «Пожар» в зависимости от типа извещателей (рис. 4). В зависимости от режима работы он может занимать от одного до четырех адресов. Питание неадресных подшлейфов может обеспечиваться либо от адресно-аналогового шлейфа (рис. 2), либо от дополнительного источника питания с гальванической развязкой (рис. 3).

Табл. 1. Алгоритм работы пожарного шлейфа

Рис. 1. Электроника модуля DDM800

Рис. 2. Два радиальных шлейфа класса В с питанием от адресно-анлоговой петли

Рис. 3. Петлевой шлейф класса А с питанием от внешнего источника

Табл. 2. Режимы работы неадресного подшлейфа

Табл. 3. Алгоритм работы неадресного шлейфа класса А и В

Кроме того, модуль DDM800 работает в составе адресно-аналоговой системы и передает на панель не сигналы «Пожар» и «Неисправность», а значительно более информативные и удобные для анализа аналоговые величины, связанные с токами шлейфов. Эти численные величины транслируются с периодом опроса 5 с и отображаются на дисплее панели (рис. 5-7).

Какие параметры должен иметь шлейф для обеспечения возможности приема сигнала «Пожар» от пожарных извещателей при обрыве радиального шлейфа? Прежде всего необходимо отметить, что в шлейфах класса А и класса В не допускается использование последовательно включенных из-вещателей с нормально замкнутыми контактами. Непременное условие их работы - это отсутствие обрыва шлейфа. При обрыве шлейфа все извещатели до и после места обрыва не способны изменить напряжение и ток шлейфа. В пожарных шлейфах класса А и В любых стилей могут использоваться только пожарные извещатели, включенные в шлейф параллельно.

Для радиальных шлейфов класса В параметры должны быть выбраны таким образом, чтобы с достаточно большими технологическими запасами было возможно идентифицировать дежурный режим изве-щателей и активацию извещателя как при исправном шлейфе с оконечным резистором, так и при обрыве шлейфа в любом месте. В таблице 2 приведены режимы работы неадресного шлейфа. Максимально допустимый ток потребления пожарных из-вещателей в дежурном режиме 2,5 мА, что значительно меньше порога тока обрыва шлейфа, равного 3,2 мА. Следовательно, даже при обрыве в конце шлейфа ток потребления извещателей в дежурном режиме будет меньше тока обрыва, и неисправность будет идентифицирована. Минимальный ток шлейфа в дежурном режиме за счет оконечного резистора равен 4,2 мА, при максимальном количестве пожарных извещателей он может увеличиться до 6,7 мА. Широкий диапазон токов шлейфа в режиме «Пожар» примерно от 10,5 мА до 24,5 мА обеспечивает достоверное формирование сигнала «Пожар» как в случае максимально нагруженного шлейфа, так и при обрыве. Даже если к модулю в результате обрыва шлейфа остается подключенным только один из-вещатель, то при токе извещателя в «Пожаре» более 10,5 мА контрольная панель фиксирует режим «Пожар». С другой стороны, как правило, в зарубежных и отечественных извещателях имеются стабилитроны, которые исключают переход шлейфа в режим короткого замыкания даже при одновременном переходе в пожар нескольких извещателей. При этом, как правило, никаких дополнительных резисторов подключать к извещателям не требуется.

Рис. 4. Программирование режимов работы модуля DDM800 в программе MZXConsys

В отличие от алгоритма работы отечественных приемно-конт-рольных приборов, в логике работы зарубежных шлейфов обеспечивается безусловный приоритет сигнала «Пожар». Независимо от предыдущего состояния шлейфа, как только его параметры попадают в диапазон, соответствующий режиму «Пожар», он фиксируется адресно-аналоговой панелью (табл. 3).

Для обеспечения работоспособности всех извещателей при обрыве шлейфа используется петлевая структура шлейфа класса А без ответвлений (рис. 3). В дежурном режиме питание подается только с терминалов А, а оконечный резистор шлейфа подключен к терминалам В. Это видно по аналоговым величинам, связанным с током шлейфа, которые передаются на контрольную панель при опросе. При токе извещателей в дежурном режиме, равном 2,5 мА, и суммарном токе шлейфа 6,7 мА аналоговая величина по выходу А равна 035. Выход В отключен, и его аналоговая величина соответственно равна 001 (рис. 5).

При возникновении обрыва петли часть шлейфа, подключенная к терминалам В, остается без питания на время идентификации неисправности. По нормативным требованиям время обнаружения неисправности не должно превышать порядка 100-200 с, реально на это уходит порядка 60 с. Если обрыв произошел вблизи терминалов В, то ток по выходу А снижается на величину тока потребления оконечного резистора и становится равным 2,5 мА, аналоговая величина снижается до 015, а ток по выходу В остается нулевым в течение 60 с, и его аналоговая величина остается равной 001 (рис. 6).

После обнаружения обрыва петлевого шлейфа включается выход В и формируются два радиальных шлейфа, соответственно, значение аналоговой величины по выходу В становится равной 023, что соответствует току 4,2 мА, который потребляет оконечный резистор 4,7 кОм, подключенный к терминалам В (рис. 3).

Рис. 5. Показания петлевого шлейфа в дежурном режиме

Рис. 6. Шлейф класса А в режиме обнаружения обрыва

Рис. 7. Петлевой шлейф с обрывом преобразован в два радиальных

При использовании в одном шлейфе автоматических и ручных извещателей может производиться определение типа активированного извещателя. Сигнал «Пожар» от ручного извещателя работает по прерыванию опроса адресно-аналогового шлейфа, в так называемом режиме Fast CallPoint. Реакция на активизацию автоматического извещателя программируется отдельно и также может быть с прерыванием опроса, либо с верификацией посредством перезапроса состояния, либо без верификации. Контрольная панель индицирует сработку ручных извещателей и автоматических по разным адресам с указанием типа извещателя. Соответственно, при использовании двух радиальных шлейфов класса В в режиме Fast CallPoint всего используется четыре адреса, а при использовании петлевого шлейфа класса А - два адреса. Причем ручной изве-щатель с нормально разомкнутыми контактами подключается без дополнительного резистора и передает сигнал «Пожар» посредством короткого замыкания шлейфа, то есть реализуются шлейфы класса А стиля D и класса В стиля В . Использование этих режимов в настоящее время по нашим нормам проблематично, так как должна контролироваться исправность шлейфа на обрыв и на короткое замыкание, но интерес в части опыта реализации 2-порогового режима очевиден.

Кроме того что в режиме Fast CallPoint для введения второго порога сигнал от ручных извещателей передается коротким замыканием шлейфа, еще и ток короткого замыка- ния шлейфа увеличивается в два раза, до 50 мА. Соответственно расширяется диапазон рабочих токов шлейфа (табл. 4). В итоге диапазон токов шлейфа от 0 до 50 мА разбивается на 4 части, соответствующие режиму обрыва шлейфа, дежурному режиму, режиму «Пожар» от автоматического извещателя, режиму «Пожар» от ручного извещателя. Естественно, режимы «Пожар» формируются и при наличии обрыва шлейфа.

Для сравнения, в отечественных приборах в два раза меньший диапазон токов шлейфа, от 0 мА до 20-25 мА, укладывается 5 режимов у дымового шлейфа и 7 режимов у комбинированного шлейфа, и при обрыве шлейфа единственным достоверным сигналом остается «Неисправность», и сигналы «Пожар» от сработавших в дальнейшем извещателей не принимаются ППКП .

Табл. 4. Пороги петлевого шлейфа класса А стиля D с распознаванием сработки автоматического и ручного извещателя (режим Fast CallPoint)

Таким образом, использование петлевых шлейфов класса А стиля Е позволяет обеспечить работоспособность всех извещателей при обрыве шлейфа не только в адресно-аналоговых, но и в неадресных традиционных системах. При прокладке петлевого шлейфа по различным зонам это позволяет значительно повысить работоспособность шлейфов в условиях пожара.

ЛИТЕРАТУРА:

1. Неплохое И. Классы и стили и шлейфов. Обеспечение работоспособности. Часть первая // «Алгоритм безопасности». -2012. - № 5.

2. Неплохое И. Контроль шлейфа, защита от обрыва и от КЗ// «Алгоритм безопасности». - 2005. - № 5.

3. Неплохое И. Безадресный подшлейф е адресно-аналоговой системе // «Алгоритм безопасности». - 2007. - № 6.

4. Неплохов И. Газовое пожаротушение: требования британских стандартов // «Системы безопасности». - 2007 - № 5.

5. Неплохов И. Классификация неадресных шлейфов, или Почему за рубежом нет двухпороговых приборов // «Алгоритм безопасности». - 2008. - № 3.

6. Неплохов И. Анализ параметров шлейфа двухпорогового ППКП // «Алгоритм безопасности». - 2010. - № 5.

7. Неплохов И. Анализ параметров шлейфа двухпорогового ППКП. Ч. 2 // «Алгоритм безопасности». - 2010. - № 6.

8. Неплохов И. Анализ параметров шлейфа двухпорогового ППКП. Ч. 3 // «Алгоритм безопасности». - 2011. - № 1.

9. Неплохов И. Проблемы подключения тепловых извещателей с индикаторами// «Пожарная безопасность - 2011». - «Гротек».

10. ГОСТ Р 53325-2012 Техника пожарная. Технические средства пожарной автоматики. Общие технические требования. Методы испытаний.

11. NFPA 72, National Fire Alarm Code.

ЧАСТЬ 3

В первой и второй частях статьи, опубликованных в №№ 5, 6 журнала «Алгоритм безопасности» за 2012 год, была рассмотрена зарубежная классификация шлейфов пожарной сигнализации и линий связи в системах пожарной автоматики . В третьей части статьи рассматривается техническая реализация линий связи разных классов и стилей. Приведены параметры радиальных линий связи класса B по классификации NFPA72 , обеспечивающих работоспособность оповещателей до места обрыва шлейфа и кольцевых линий связи класса А, обеспечивающих работоспособность оповещателей до и после обрыва линии связи.

ТРЕБОВАНИЯ ФЕДЕРАЛЬНОГО ЗАКОНА

Федеральный закон от 22 июля 2009 года № 123-Ф3 «Технический регламент о требованиях пожарной безопасности» ввел требования обеспечения работоспособности систем противопожарной защиты при пожаре. В статье 51 «Цель создания систем противопожарной защиты», в п. 3 сказано: «Системы противопожарной защиты должны обладать надежностью и устойчивостью к воздействию опасных факторов пожара в течение времени, необходимого для достижения целей обеспечения пожарной безопасности». Далее в п. 4 сказано: «Состав и функциональные характеристики систем противопожарной защиты объектов устанавливаются нормативными документами по пожарной безопасности». Кроме того, в статье 84 «Требования пожарной безопасности к системам оповещения людей о пожаре и управления эвакуацией людей в зданиях и сооружениях», в п. 7. сказано: «Системы оповещения людей о пожаре и управления эвакуацией людей должны функционировать в течение времени, необходимого для завершения эвакуации людей из здания, сооружения». Также в статье 84, п. 6. «Конструктивное исполнение и характеристики элементов противодым-ной защиты зданий и сооружений в зависимости от целей противодымной защиты должны обеспечивать исправную работу систем приточно-вытяжной про-тиводымной вентиляции в течение времени, необходимого для эвакуации людей в безопасную зону, или в течение всей продолжительности пожара».

НОРМАТИВНАЯ БАЗА

Соответственно были внесены требования по повышению работоспособности противопожарных систем в условиях пожара в нормативную базу. В первой редакции Свода правил СП 6.13130.2009 «Системы противопожарной защиты. Электрооборудование. Требования пожарной безопасности» было указано, что «кабельные линии систем противопожарной защиты должны выполняться огнестойкими кабелями с медными жилами, не распространяющими горение при групповой прокладке по категории А по ГОСТ Р МЭК 60332-3-22 с низким дымо- и газовыделением (нг-FRLS) или не содержащими галогенов (нг-FRHF)», и «кабельные линии систем оповещения и управления эвакуацией (СОУЭ) и пожарной сигнализации, участвующие в обеспечении эвакуации людей при пожаре, должны сохранять работоспособность в условиях пожара в течение времени, необходимого для полной эвакуации людей в безопасную зону».

С 25 февраля 2013 года введен в действие новый Свода правил СП 6.13130.2013 , в котором обязательное требование использования огнестойкого кабеля отсутствует, указано только, что «Электрические кабельные линии и электропроводки СПЗ должны выполняться кабелями и проводами с медными то-копроводящими жилами».

Кроме того, Свод правил СП 3.13130.2009 «Системы противопожарной защиты. Система оповещения и управления эвакуацией людей при пожаре. Требования пожарной безопасности» содержит общее техническое требование: «Кабели, провода СОУЭ и способы их прокладки должны обеспечивать работоспособность соединительных линий в условиях пожара в течение времени, необходимого для полной эвакуации людей в безопасную зону».

Таким образом, в отечественной нормативной базе рассматриваются способы обеспечения работоспособности линий связи при использовании огнестойкого кабеля и способов прокладки. Схемотехнические решения, обеспечивающие повышение работоспособности линий связи, по каким-то причинам до сих пор не рассматриваются. Используется дорогостоящий огнестойкий кабель FRLS и FRHF, но нет защиты линии связи от элементарного обрыва. В новую версию ГОСТ Р 53325-2012 введены требования для изоляторов короткого замыкания (ИКЗ) для адресных шлейфов и линий связи, но в Сводах правил не определены требования по их обязательному использованию. Причем в большинстве отечественных адресных систем обязательное введение ИКЗ в адресные шлейфы - это полумера, так как линии связи с RS-485 протоколом, по которым модули с адресными шлейфами подключаются к концентратору, все так же остаются незащищенными от обрыва и от короткого замыкания. При возникновении неисправности в этих линиях связи происходит отключение целиком одного, нескольких или всех адресных шлейфов со всеми изве-щателями, модулями, оповещателями и ИКЗ. Введение требований обеспечения выхода из строя не более 32 устройств, при обрыве или коротком замыкании любых линий связи, а не только шлейфов, автоматически приводит к применению петлевых линий связи.

Другой существенный недостаток наших стихийно возникающих эвристических принципов построения линий связи с модулями управления - это отсутствие контроля линии связи с источником питания и наличия напряжения на входе модуля. Обычно контролируется только линия управления до релейного модуля, что так же определяет низкую работоспособность системы.

ЛИНИИ СВЯЗИ С ОПОВЕЩАТЕЛЯМИ ПО NFPA72-2013

В NFPA72 версии 2002 года были определены линии связи с оповещателями класса А стиля Z и класса В стилей W, X и Y. В последующих редакциях для оповеща-телей были оставлены только классы А и В без их подразделения на стили. Линии класса В обеспечивают работоспособность при замыкании одного проводника на землю с формированием сигналов неисправности (рис. 1), но не обеспечивают работоспособность оповещателей за местом обрыва. Линии связи класса А имеют резервный канал, обеспечивают работоспособность при одиночном обрыве или при одиночном замыкании одного из проводников на землю с формированием сигналов неисправности (рис. 2).


Причем линии связи класса А, выполненные с использованием физических проводников, например, меди или оптоволокна, должны быть проложены раздельно: исходящие проводники и проводники, возвращающиеся к блоку управления. Допускается прокладка одним путем и с применением 4-жильного кабеля при условии, если длина линии связи не более 10 футов (3,0 м), подключается только одно устройство, либо несколько оповещателей, установленных в одном помещении площадью не более 1000 ft2 (93 м2).

Кроме того, существует требование, чтобы кольцевые шлейфы или линии связи не проходили через одно помещение два раза. Таким образом, при использовании изоляторов короткого замыкания обеспечивается высокая работоспособность системы как в нормальных условиях при механических повреждениях шлейфа, так и в условиях пожара.

АДРЕСНО-АНАЛОГОВЫЕ МОДУЛИ

В подзаголовке нет ошибки, как могло бы показаться некоторым читателям, не знакомым с оборудованием ведущих мировых производителей. В действительности для повышения уровня контроля состояния линий связи в адресно-аналоговой системе модули передают на панель не коды неисправностей «Обрыв» и «Короткое замыкание», а аналоговые величины, связанные с сопротивлением линии связи. В зависимости от уровня тока потребления оповещателей в режиме «Пожар» могут использоваться различные технические решения. В простейшем случае, при сравнительно небольших токах нагрузки, например до 75 мА, питание оповещателей производится от адресно-аналоговой петли, а управление - через транзисторные ключи. Модуль управления оповещателями LPS800 имеет две пары выходов S+ S- и R+ R-. Радиальная линия связи класса В с оконечным резистором подключается к выходам S+ S-(рис. 3). Кольцевая линия связи класса А подключается к выходам S+ S- и R+ R-, а оконечный резистор - к терминалам R+ R-(рис. 4). При этом оповещатели запитыва-ются с обоих выходов одновременно и, несмотря на обрыв линии связи, все они остаются работоспособными.

В обоих случаях адресно-аналоговая панель контролирует обрыв и короткое замыкание линии связи по аналоговым величинам тока и напряжения, определяемого в дежурном режиме оконечным резистором. На рисунке 5 а, б, в представлены аналоговые величины на дисплее адресно-аналоговой панели, полученные от модуля LPS800 с адресом А249 соответственно для дежурного режима, режима обрыва линии связи и режима короткого замыкания линии связи.

Оповещатели с большими токами потребления до 2 А запитываются от внешнего источника питания, чтобы не перегружать адресно-аналоговый шлейф, и управление производится при использовании поляризованного реле. Соответственно модуль управления оповещателями SNM800 кроме двух пар выходов S+ S- и R+ R- для подключения оповещателей дополнительно имеет две пары терминалов I+ I- для подключения внешнего источника питания и подключения питания к следующему модулю (рис. 6, 7). При использовании кольцевой линии связи класса А оповещатели запитываются с обоих выходов и, несмотря на обрыв линии связи, все они остаются работоспособными (рис. 7). При этом адресно-аналоговая панель контролирует напряжение внешнего источника питания на входе модуля по показаниям аналоговых величин, передаваемых модулем SNM800, и формирует сигналы «Неисправность» и «Неисправность оповещателей» при снижении напряжения питания.

а) дежурный режим; б) режим обрыва линии связи; в) режим короткого замыкания линии связи

НЕАДРЕСНЫЕ МОДУЛИ

Для управления оповещателями с большими токами потребления до 15 А могутиспользоваться дополнительные неадресные модули – саунд бустеры (рис.8).

Модуль содержит 2 реле, сдвоенные терминалы для подключения внешнего источника питания и для подключения радиальной линии связи с оповещателями. Притоках до 10 А допускается подключение кодинарным терминалам, при больших токах необходимо использовать параллельноеподключение каждого проводника, как показано на рисунке 9. Модуль SB520 подключается к линии связи модуля LPS800или модуля SNM800 через терминалы I/P, аоконечный резистор подключается к терминалам EOL. Релейный модуль саунд бустер обеспечивает контроль линий связи с оповещателями и контроль внешнего напряжения питания на входе. При обнаружении неисправности модуль SB520 производит отключение оконечного резистораEOL и тем самым передает сигнал неисправности через адресный модуль LPS800 илиSNM800 на контрольную панель.


Таким образом, современные технические решения с линиями связи класса А поклассификации NFPA72, обеспечивающиеработоспособность всех оповещателей при обрыве линии связи, и релейные модули с контролем линии связи и напряжения внешнего источника питания позволяют значительно повысить уровень работоспособности противопожарных систем в условиях пожара. Так же необходимо отметить, что в отечественных нормах отсутствуют требования по классификации шлейфов и линий связи, что приводит к широкому использованию только радиальных линий связи, неработоспособных при обрывах. Отсутствие четких требований в нормативных документах по контролю линий связи допускает использование релейных модулей без контроля наличия напряжения питания, что значительно снижает уровень контроля работоспособности противопожарных систем.

Продолжение следует...

ЛИТЕРАТУРА

1. Неплохов И. Классы и стили и шлейфов. Обеспечение работоспособности. Часть 1 // «Алгоритм безопасности». - 2012. - № 5.

2. Неплохов И. Классы и стили и шлейфов. Обеспечение работоспособности. Часть вторая// «Алгоритм безопасности». - 2012. - № 6.

3. NFPA 72-2013 г., National Fire Alarm Code.

4. № 123-ФЗ Технический регламент о требованиях пожарной безопасности.

5. Свод правил СП 6.13130.2009 «Системы противопожарной защиты. Электрооборудование. Требования пожарной безопасности».

6. ГОСТ Р МЭК 60332-3-22-2005 Испытания электрических и оптических кабелей в условиях воздействия пламени. Часть 3-22. Распространение пламени по вертикально расположенным пучкам проводов или кабелей. Категория А.

7. Свод правил СП 6.13130.2013 «Системы противопожарной защиты. Электрооборудование. Требования пожарной безопасности».

8. Свод правил СП 3.13130.2009 «Системы противопожарной защиты. Система оповещения и управления эвакуацией людей при пожаре. Требования пожарной безопасности».

9. ГОСТР 53325-2012 Техника пожарная. Технические средства пожарной автоматики. Общие технические требования. Методы испытаний.

В.Н. Коренев,
к.т.н., руководитель направления разработок
и внедрения ООО «Системы Безопасности»,
г. Новосибирск

Пороговые шлейфы сигнализации, несмотря на свою низкую информативность и восприимчивость к помехам, продолжают применяться в различных системах тревожной сигнализации. Это обусловлено тем, что на рынке изделий тревожной сигнализации остается еще много неадресных извещателей и датчиков, которые имеют на своем выходе два стабильных состояния, соответствующие нормальному и тревожному. Они успешно конкурируют с адресными изделиями в силу их дешевизны и совместимости с различными приемно-контрольными приборами.

Несмотря на простоту схемотехники, пороговые шлейфы сигнализации можно сделать значительно информативнее, чем это реализовано в существующей аппаратуре. Это становится возможным с применением современной микропроцессорной техники, у которой возрастает разрядность АЦП, производительность обработки данных, объемы встроенной памяти и в тоже время уменьшается цена.

Однако повышение информативности связано с ростом контролируемых событий и сложностью алгоритмов перехода из одного состояния в другое. Описывать эти процессы становится все сложнее. Поэтому, при разработке таких изделий и их описании для пользователей, удобно использовать физические и программные модели шлейфа сигнализации.

Каждый пороговый шлейф сигнализации (ШС) прибора можно описать моделями с двух точек зрения:

С физической точки зрения – это электрическая цепь, соединяющая прибор с извещателями (датчиками) посредством проводных соединений (Рис.1). Каждый ШС имеет различные схемотехнические варианты , выбираемые разработчиком. В схеме включения изображаются контакты извещателя, резисторы и другие компоненты, обеспечиващие работу ШС.

Любой извещатель можно представить в виде электрического контакта, который при срабатывании скачком меняет свое сопротивление: становится либо замкнутом (сопротивление контакта равно нулю), либо разомкнутом (сопротивление контакта равно бесконечности).

Контакты извещателя подключается проводными соединительным линиями к клеммам приемно-контрольного прибора.

В приемно-контрольном приборе клеммы связаны с «Измерителем сопротивления», который измеряет электрическое сопротивление всей цепи ШС, а «Решающее устройство» по величине ее сопротивления принимает решение о том, сработал извещатель или нет.

Рис.1. Модель порогового шлейфа сигнализации

ШС подключается к измерителю сопротивления через клеммы, расположенные на плате прибора приемно-контрольного (ППК). Измеритель измеряет электрическое сопротивление всей цепи ШС, а решающее устройство по величине ее сопротивления принимает решение о том, сработал извещатель или нет.

С информационной точки зрения - это программный объект, состоящий из фиксированного набора событий. Событие в ШС может происходить в результате изменения сопротивления ШС, либо приходить извне, в виде управляющих команд. Набор событий определяется тактиками ШС . Каждая тактика ШС включает в себя:

  1. Тип шлейфа сигнализации (пожарный, охранный, аварийный и управления) и название;
  2. Электрическую схему включения;
  3. Шкалу диапазонов сопротивлений ШС, разделенную порогами;
  4. Привязки состояний к диапазонам сопротивлений ШС;
  5. Список событий ШС;
  6. Матрицу событий.

В качестве примера применения терминов, рассмотрим тактику пожарного шлейфа сигнализации «Однопороговая». В такой тактике предусматривается выдача сигнала «Пожар» при срабатывании любого одного или нескольких извещателей:

  1. Тип шлейфа сигнализации – пожарный, однопороговый.
  2. Электрическая схема включения - может быть выполнена в нескольких вариантах (рис.1.1.):
  1. с нормально-замкнутыми контактами извещателей (К1, К2). В этом случае контакты соединяются в линию шлейфа последовательно, а контрольные резисторы подключается параллельно контактам извещателей;
  2. с нормально-разомкнутыми контактами извещателе (К3, К4). В этом случае контакты извещателей соединяются параллельно линии шлейфа, а контрольные резисторы подключается последовательно контактам;

Рис.2. Электрические схемы включения контактов пожарных извещателей.

3) Шкала диапазонов сопротивлений, разделенная разработчиком порогами сопротивлений на 8 диапазонов: Д1 … Д8 (Рис.3).

Рис.3. Шкала диапазонов сопротивлений ШС

При замыкании и размыкании контактов извещателей в различных комбинациях, сопротивление шлейфа попадает в тот или иной диапазон.

  1. Привязки состояний к диапазонам сопротивлений ШС

Под состояниями шлейфа понимаются физические или логические свойства, характеризующие шлейф при изменении его сопротивления.

В «Однопороговом» ШПС разработчиком назначены следующие состояния:

  • Норма;
  • Пожар;
  • Обрыв.

Эти состояния привязываются к диапазонам:

  1. Список Событий ШС

Под событием понимается переход от одного состояния к другому. При этом учитываются как состояния самого шлейфа, так и другие состояния прибора, имеющие отношения к шлейфу.

В «Однопороговом» ШПС разработчиком назначены следующие события:

  • Сброс - событие в приборе в момент его перезагрузки (включении питания);
  • НеГотов - событие означающее, что после перезагрузки сопротивление шлейфа не находится в диапазоне «Норма»;
  • НаДежурстве – сопротивление шлейфа перешло в диапазон «Норма» [Д5] ;
  • Пожар – сопротивление шлейфа в любом из диапазонов «Пожар» [Д2] [Д3] [Д4] [Д6] [Д7] ;
  • Замыкание - сопротивление шлейфа находится в диапазоне «КЗ» [Д1] ;
  • Обрыв - сопротивление шлейфа находится в диапазоне «Обрыв» [Д8] ;
  1. Матрица Событий

Матрица событий определяет последовательность наступления событий при изменении состояний. При помощи матрицы удобно представлять алгоритмы работы шлейфа. Матрица представляет собой таблицу, в которой имеются следующие элементы:

Рис.4. Внешний вид матрицы событий.

Принцип применения матрицы для описания алгоритма работы шлейфа представлен на рис.5. В качестве примера, в крайне левом столбце, выберем текущим статус «НаДежурстве». Выделим зеленым фоном строку с событиями в поле событий, которые возможны при нахождении в этом статусе. Далее рассмотрим, какое событие произойдет при появлении нового состояния шлейфа «Пожар»:

Рис.5. Пример работы матрицы при наступлении состояния «Пожар»

В результате работы матрицы шлейф перешел в новый текущий статус «Пожар». Анализ влияния новых состояний шлейфа в статусе «Пожар» показывает, что никакое другое физическое изменение сопротивления шлейфа не изменит этого статуса. Для того чтобы вывести шлейф из статуса «Пожар» его необходимо перевести в новое состояние «Сброс». Такое состояние может прийти в шлейф извне: например, при нажатии кнопки сброса.

Таким образом, матричное представление существенно облегчает описание сложных алгоритмов работы пороговых шлейфов сигнализации и может быть использовано, как при их разработке, так и при описании работы изделия в руководстве пользователя . Очевидно, что матричное представление удобно и при описании алгоритмов других узлов изделий тревожной сигнализации.

Литература:

  1. Пинаев А., Никольский М. Оценка качества и надежности неадресных приборов пожарной сигнализации //Журнал "Алгоритм безопасности", № 6, 2007.
  2. Неплохов И.Г. Анализ параметров шлейфа двухпорогового ППКП// Алгоритмы безопасности №5, 2010г.
  3. Прибор контроля опасных ситуаций и оповещения "Хранитель-IT"//

Пожарная сигнализация (ПС) это комплекс технических средств, предназначение которых обнаружить возгорание, задымление или пожар и своевременно оповестить об этом человека. Основная её задача спасение жизни людей, минимизация причиненного ущерба и сохранения имущества.

Она может состоять из следующих элементов:

  • Прибор приёмно-контрольный пожарный (ППКП) – мозг всей системы, осуществляет контроль над шлейфами и датчиками, включает и отключает автоматику (пожаротушение, дымоудаление), управляет оповещателями и передает сигналы на пульт охранного предприятия или локальному диспетчеру (например, охраннику);
  • Различные типы датчиков , которые могут реагировать на такие факторы, как – дым, открытое пламя и тепло;
  • Шлейф пожарной сигнализации (ШС) – это линия связи между датчиками (извещателями) и ППКП. По нему же осуществляется питание датчиков;
  • Оповещатель – устройство призванное привлекать к себе внимание, бывают световыми – строб-лампы, и звуковыми – сирены.

По способу контроля над шлейфами пожарная сигнализация распределяется на следующие типы:

Пороговая система ПС

Её еще часто называют традиционной. Принцип работы данного типа основан на изменение сопротивления в шлейфе систем пожарной сигнализации. Датчики могут находиться только в двух физических состояниях «норма » и «пожар ». В случае фиксации фактора пожара, датчик изменяет своё внутреннее сопротивление и приёмно-контрольный прибор выдает сигнал тревоги по тому шлейфу, в котором установлен этот датчик. Не всегда визуально можно определить место сработки, т.к. в пороговых системах на одном шлейфе устанавливают в среднем 10-20 пожарных извещателей.

Для определения неисправности ШС (а не состояние датчиков) применяется оконечный резистор. Устанавливается он всегда в конце шлейфа. При использовании пожарной тактики «сработка ПС по двум извещателям» , для получения сигнала «внимание» или «вероятность пожара» в каждый датчик устанавливается добавочное сопротивление. Это позволяет применять автоматические системы пожаротушения на объекте и исключения возможных ложных тревог и порчи имущества. Автоматика пожаротушения запускается только в случае одновременной сработки двух и более извещателей.

ППКП “Гранит-5”

К пороговому типу можно отнести следующие ППКП:

  • серия «Нота», производителя Аргус-Спектр
  • ВЭРС-ПК, производителя ВЭРС
  • приборы серии «Гранит», производителя НПО «Сибирский Арсенал»
  • Сигнал-20П, Сигнал-20М, С2000-4, производителя НПБ Болид и другие пожарные приборы.

К плюсам традиционных систем можно отнести простоту монтажа и низкую стоимость оборудования. Самые значительные недостатки – неудобство обслуживания пожарной сигнализации и большая вероятность ложных тревог (сопротивление может меняться от многих факторов, датчики не могут передавать информацию о запыленности), снизить количество которых можно только используя другой тип ПС и оборудования.

Адресно-пороговая система ПС

Более совершенная система, способна в автоматическом режиме периодически проверять состояние датчиков. В отличие от пороговой сигнализации принцип работы заключается в ином алгоритме опроса датчиков. Каждому извещателю присвоен свой уникальный адрес, что позволяет приёмно-контрольному прибору отличать их и понимать конкретную причину и место неисправности.

Свод Правил СП5.13130 допускает установку только одного адресного извещателя при условии, что:

  • ПС не управляет установками пожарной сигнализации и пожаротушения или систем оповещения о пожаре 5-го типа, или другого оборудования которое в результате запуска может привести к материальным потерям и снижению безопасности людей;
  • площадь помещения, где устанавливается пожарный извещатель не больше площади, на которую рассчитан данный тип датчика (проверить можно по паспорту технической документации на него);
  • осуществляется контроль работоспособности датчика и в случае неисправности формируется сигнал «неисправность»;
  • Обеспечивается возможность замены неисправного извещателя, а так же его обнаружения по внешней индикации.

Датчики в адресно-пороговой сигнализации могут уже находиться нескольких физических состояниях – «норма» , «пожар» , «неисправность» , «внимание» , «запыленность» и других. При этом датчик самостоятельно переходит в другое состояние, что позволяет определить место неисправности или возгорания с точностью до извещателя.

ППКП “Дозор-1М”

К адресно-пороговому типу пожарной сигнализации можно отнести следующие ППКП:

  • Сигнал-10, производителя НПБ Болид;
  • Сигнал-99, производителя ПромСервис-99;
  • Дозор-1М, производителя Нита, и другие пожарные приборы.

Адресно-аналоговая система ПС

Самый прогрессивный на сегодняшний момент тип пожарной сигнализации. Обладает тем же функционалом что и адресно-пороговые системы, но отличается в способе обработки сигналов от датчиков. Решение о переходе в режим «пожар» или любое другое состояние, принимает именно контрольная панель, а не извещатель. Это позволяет настраивать работу пожарной сигнализации под внешние факторы. ППКП одновременно контролирует состояние параметров установленных устройств и анализирует полученные значения, что позволяет существенно снизить вероятность ложных тревог.

Помимо этого такие системы обладают еще не оспоримым преимуществом – возможность применять любую топологию адресной линии – шина , кольцо и звезда . Например, в случае обрыва кольцевой линии, она распадется на два независимых проводных шлейфа, которые полностью сохранят свою работоспособность. В линиях типа звезда можно использовать специальные изоляторы короткого замыкания, которые определят место обрыва линии или её замыкания.

Очень удобны такие системы в обслуживании, т.к. можно выявить в режиме реального времени извещатели, которые требуют продувки или замены.

К адресно-аналоговому типу пожарной сигнализации можно отнести следующие ППКП:

  • Контроллер двухпроводной линии связи С2000-КДЛ, производителя НПБ Болид;
  • Серия адресных приборов «Рубеж», производителя Rubezh;
  • РРОП 2 и РРОП-И (в зависимости от используемых датчиков), производителя Аргус-Спектр;
  • и многих других приборов и производителей.

Схема адресно-аналоговой системы пожарной сигнализации на базе ППКП С2000-КДЛ

Во время выбора системы проектировщики учитывают все требования технического задания заказчика и обращают внимание на надежность функционирования, стоимость монтажных работ и требования к регламентному обслуживанию. Когда критерий надежности для более простой системы начинает понижаться, проектировщики переходят к использованию более высокого уровня.

Радиоканальные варианты используются в тех случаях, когда прокладка кабелей становится экономически невыгодной. Но такой вариант требует больше средств на обслуживание и поддержание устройств в рабочем состоянии за счет периодической замены элементов питания.

Классификация систем пожарной сигнализации по ГОСТ Р 53325–2012

Типы и виды систем пожарной сигнализации, а так же их классификация представлена в ГОСТ Р 53325–2012 «Техника пожарная. Технические средства пожарной автоматики. Общие технические требования и методы испытаний».

Адресные и неадресные системы мы уже рассмотрели выше. Тут можно добавить, что первые позволяют устанавливать неадресные пожарные извещатели, через специальные расширители. На один адрес можно подключить до восьми датчиков.

По виду передаваемой информацией от ППКП до датчиков делятся на:

  • аналоговые;
  • пороговые;
  • комбинированные.

По общей информационной ёмкости, т.е. общему количеству подключаемых устройств и шлейфов делятся на приборы:

  • малой информационной ёмкости (до 5 ШС);
  • средней информационной ёмкости (от 5до 20 ШС);
  • большой информационной ёмкости (более 20 ШС).

По информативности, иначе по возможному количеству выдаваемых извещений (пожар, неисправность, запыленность и прочие) делятся на приборы:

  • малой информативности (до 3х извещений);
  • средней информативности (от 3х до 5х извещений);
  • большой информативности (от 3х до 5х извещений);

Кроме этих параметров системы классифицируются по:

  • Физической реализации линий связи: радиоканальные, проводные, комбинированные и оптиковолоконные;
  • По составу и функциональности: без применением средств вычислительной техники, с применением СВТ и возможностью её применения;
  • Объекту управления. Управление различными установками пожаротушения, средствами дымоудаления, средствами оповещения и комбинированными;
  • Возможностям расширения. Нерасширяемые или расширяемые, допускающие монтаж в корпусе или отдельное подключение дополнительных компонентов.

Типы систем оповещения при пожаре

Основная задача системы оповещения и управления эвакуацией (СОУЭ) – это своевременное оповещение людей о пожаре с целью обеспечения безопасности и оперативной эвакуации из задымленных помещений и зданий в безопасную зону. Согласно ФЗ-123 «Технический регламент о требованиях пожарной безопасности» и СП 3.13130.2009 она подразделяются на пять типов.

Первый и второй тип СОУЭ

На большинство малых и средних объектов по нормам пожарной безопасности необходимо устанавливать первый и второй тип оповещения.

При этом для первого типа характеризуется обязательное наличие звукового оповещателя – сирены. Для второго типа добавляется еще световые табло «выход». Оповещение при пожаре должно срабатывать одновременно во всех помещениях с постоянным или временным пребыванием людей.

Третий, четвертый и пятый тип СОУЭ

Данные типы относятся к автоматизированным системам, запуск оповещения полностью отведен автоматике, и роль человека в управлении системой сведена к минимуму.

Для третьего, четвёртого и пятого типа СОУЭ основным способ оповещения является речевой. Передаются заранее разработанные и записанные тексты, которые позволяют провести эвакуацию максимально эффективно.

В 3-м типе дополнительно используется световые указатели «выход» и регламентируется очередность оповещения – сначала обслуживающего персонала, а затем всех остальных по специально разработанной очередности.

В 4-м типе появляется требование о наличия связи с диспетчерской внутри зоны оповещения, а так же дополнительных световых указателей направления движения. Пятый тип , включает все, что перечислено в первых четырех, плюс к этому добавляется требование о наличие разделения включения световых указателей для каждой зоны эвакуации, обеспечивается полная автоматизация управления системой оповещения и организация множества путей эвакуации из каждой зоны оповещения.

Шлейф (охранно-пожарная сигнализация) - проводные и не проводные линии связи , прокладываемые от пожарных извещателей до распределительной коробки или приемно-контрольного прибора. :пп. 3.93, 3.118

Охранные и пожарные шлейфы имеют различные алгоритмы работы. Для охранного шлейфа состояние "неисправность" не предусматривается - при обрыве, коротком замыкании, кратковременном или незначительном по величине изменении сопротивления шлейфа формируется сигнал "Тревога". Это вполне оправдано из-за высокой вероятности умышленного повреждения шлейфа с целью отключения охранных извещателей.

Для сигнализации (за исключением местной сигнализации) необходимо использование линий или каналов связи. Сигнализация может производится несколькими основными методами:

Совокупность шлейфов сигнализации, соединительных линий для передачи по каналам связи или отдельным линиям на прибор приемно-контрольных извещений, устройств для соединения и разветвления кабелей и проводов, подземной канализации, труб и арматуры для прокладки кабелей и проводов входит в линейную часть системы сигнализации.

Энциклопедичный YouTube

    1 / 1

    ✪ Охранно-пожарная сигнализация. Обучение.

Субтитры

Дистанционная сигнализация

Автоматические установки пожаротушения (за исключением автономных) должны выполнять функцию пожарной сигнализации. :п. 4.2 Для автоматического и дистанционного включения установок пожаротушения могут использоваться трубопроводы, заполненный водой, водным раствором, сжатым воздухом или трос с тепловыми замками. :п. 3.64

Механические

Первые установки пожарной сигнализации использовали механические шлейфы. Они представляло собой груз, подвешенный на веревке, которая сгорала при пожаре. При этом груз падал и за счет энергии его падения приводился в действие тревожный звонок. Такое устройство было запатентовано в середине XIX века в Англии. В дальнейшем конструкция получила развитие в США в патенте 1886 года. Конструкция использовала несколько шлейфов.

До появления широкодоступного электронного оборудования в качестве побудительных устройств продолжались широко использоваться тросовые устройства. Тросы состояли из нескольких звеньев, звенья троса соединялись легкоплавкими замками. Вместо легкоплавких замков возможно было включать устройства ручного пуска. Концы каждой ветви тросовой системы прикреплялись к рычагу побудительного клапана системы пожаротушения и приспособлению натяжения троса.

Гидравлические

Пневматические

Проводные

Проводные (телесигнализация)

Шлейфы пожарной сигнализации, как правило, выполняются проводами связи, если технической документацией на приборы приемно-контрольные пожарные не предусмотрено применение специальных типов проводов или кабелей. Для шлейфов пожарной сигнализации возможно использовать только кабели с медными жилами, диаметром не менее 0,5 мм. Необходим автоматический контроль целостности шлейфа по всей длине.

При параллельной открытой прокладке расстояние от шлейфов пожарной сигнализации с напряжением до 60 В до силовых и осветительных кабелей должно быть не менее 0,5 м. Возможна прокладка шлейфов на расстоянии менее 0,5 м от силовых и осветительных кабелей при условии их экранирования от электромагнитных наводок.

В помещениях, где электромагнитные поля и наводки имеют высокий уровень, шлейфы пожарной сигнализации должны быть защищены от наводок.

В конце шлейфа рекомендуется предусматривать устройство, обеспечивающее визуальный контроль его включенного состояния, а также соединительную коробку [убрать шаблон ] для оценки состояния системы пожарной сигнализации, которые необходимо устанавливать на доступном месте и высоте. В качестве такого устройства может быть использован ручной извещатель или устройство контроля шлейфов.

По структуре шлейфы делятся на:

Безадресные

Многопроводные системы телесигнализации являются улучшенными системами дистанционной сигнализации. Для сокращения числа шлейфов применяется несколько (два…четыре) значений импульсного признака на один шлейф. Наиболее употребительные импульсные признаки - полярность и величина. :72

Знакопостоянные

Целостность знакопостоянного шлейфа контролируется, используя оконечное устройство - резистор, устанавливаемый в конце шлейфа. Чем больше номинал оконечного резистора, тем меньше ток потребления в дежурном режиме, соответственно, меньше ёмкость источника резервного питания и ниже его стоимость. Состояние шлейфа прибора приемно-контрольного определяет по его току потребления или, что то же самое, по напряжению на резисторе, через который питается шлейф. При включении в шлейф дымовых извещателей ток шлейфа увеличится на величину их суммарного тока в дежурном режиме. Причем его величина для выявления обрыва шлейфа должна быть меньше тока в дежурном режиме не нагруженного шлейфа.

Передача нескольких дискретных сигналов в аналоговый сигнал шлейфа происходит с помощью цифро-аналогового преобразования взвешивающего типа.

Знакопеременные

Метод контроля шлейфа сигнализации с питанием шлейфа знакопеременным импульсным напряжением обеспечивает повышение нагрузочной способности шлейфа для питания токопотребляющих извещателей. В качестве выносных элементов шлейфов сигнализации используют последовательно соединенные резистор и диод , в прямом цикле напряжения он включен в обратном направлении и потери на нём отсутствуют. В обратном цикле из-за его короткой длительности потери так же незначительны. Сигнал «Пожар» передается в положительной составляющей сигнала, «Неисправность» - в отрицательной. Для продолжения работы при выдаче сигнала «Неисправность» из-за снятого с базы извещателя, в базу устанавливается диод Шоттки . Таким образом сигнал «Неисправность» из-за снятого извещателя или неисправности самотестирующегося извещателя (например, линейного) не блокирует сигнал «Пожар» от ручного извещателя.

Знакопеременный шлейф позволяет использовать самотестирующиеся извещатели в пороговых шлейфах. При обнаружении неисправности извещатель производит автоматическое изъятие самого себя из шлейфа сигнализации, и это позволяет использовать его совместно с любым пультом пожарной сигнализации, так как контроль изъятия извещателя является обязательным требованием норм пожарной безопасности для всех ПКП .

С пульсирующим напряжением

Метод контроля с питанием шлейфа сигнализации пульсирующим напряжением основан на анализе переходных процессов в шлейфе, нагруженном на конденсатор .

Адресные шлейфы

В адресных опросных системах пожарной сигнализации производится периодический опрос пожарных извещателей, обеспечивается контроль их работоспособности и идентификация неисправного извещателя прибором приемно-контрольным. Использование в пожарных извещателях этого типа специализированных процессоров с многоразрядными аналого-цифровыми преобразователями, сложными алгоритмами обработки сигналов и энергонезависимой памятью обеспечивает возможность стабилизации уровня чувствительности извещателей и формирование различных сигналов при достижении нижней границы автокомпенсации при загрязнении оптопары и верхней границы при запылении дымовой камеры.

Адресные опросные системы достаточно просто защищаются от обрыва адресного шлейфа и короткого замыкания. В опросных адресных системах пожарной сигнализации может использоваться произвольный вид шлейфа: кольцевой, разветвленный, звездой, любое их сочетание и не требуется никаких оконечных элементов. В опросных адресных системах не требуется разрывать адресный шлейф при снятии извещателя, его наличие подтверждается ответами при запросе прибора приемно - контрольного не реже одного раза в 5 - 10 сек. Если прибор приемно - контрольный при очередном запросе не получает ответ от извещателя его адрес индицируется на дисплее с соответствующим сообщением. Естественно, в этом случае отпадает необходимость использования функции разрыва шлейфа и при отключении одного извещателя сохраняется работоспособность всех остальных извещателей.

Для защиты адресного шлейфа от короткого замыкания используются изолирующие базы, которые при помощи электронных ключей автоматически отключают короткозамкнутый участок адресного шлейфа.

Искробезопасные шлейфы

При защите пожарной и охранной сигнализацией взрывоопасных помещений, необходима взрывозащита извещателей и предъявляются дополнительные требования к шлейфам сигнализации. Выбор марки извещателя следует проводить исходя из категории помещения по ПУЭ . В случае применения извещателей с маркировкой «взрывонепроницаемая оболочка» искрозащита шлейфа не требуется.

Искробезопасные шлейфы подключатся к искробезопасным клеммам искробезопасных приборов приемно-контрольных, либо через барьер искрозащиты к обычным приемно-контрольным приборам.