Рабочее колесо для насосов для воды промышленные. Устройство и принцип работы центробежных насосов. в) отсутствие внешних дефектов - визуально

Часто в сельском хозяйстве, в промышленности и в частных домах используют насосное оборудование. Их предназначение заключается в перемещении разных видов жидкости. Именно поэтому насосные агрегаты имеют много разновидностей,особое место среди которых занимают центробежные насосы.

Основной рабочий элемент этого оборудования – рабочее колесо. В данной статье подробно рассматривается понятие рабочего колеса, устройство этого конструктивного элемента, а также его виды.

1 Понятие рабочего колеса и его устройство

Рабочее колесо (крыльчатка) насоса – основной рабочий элемент насосного оборудования, который передаёт энергию, получаемую от мотора. Внешний и внутренний диаметр по лопаткам, форму лопаток, ширину колеса можно определить с помощью расчетов.

Главное назначение рабочего колеса насоса – генерирование центробежной силы , которая создаёт давление, которое приводит в движение поток жидкости.

В конструкцию рабочего колеса входят следующие основные элементы:

  • передний (ведущий) диск;
  • задний (ведомый) диск;
  • крыльчатка, которая состоит из лопастей, находящихся между дисками.

Лопасти крыльчатки насосного оборудования, зачастую, имеют изогнутость к стороне, противоположной к направлению, к которому они движутся.

1.1 Функции рабочего колеса насоса

Принцип работы крыльчатки: когда начинается рабочий цикл жидкость накапливается между лопастей одновременно с началом вращения крыльчатки. Под воздействием вращения появляется центробежная сила, способствующая появлению давления; затем жидкость отходит от середины крыльчатки и постепенно прижимается к стенкам. Перекачиваемая среда, под напором выводится наружу через нагнетательный патрубок, при этом в середине крыльчатки создается минимальное давление, способствующее поступлению следующей порции жидкости для крыльчатки.

Также следует обратить внимание, что данный процесс происходит циклично, благодаря этому работа насосного оборудования стабильная и бесперебойная.

1.2 Виды и отличия

Рабочие колеса бывают таких типов:

  • открытые;
  • закрытые;
  • полузакрытые.

Центробежный насос с открытым рабочим колесом на сегодняшний день практически не применяют, так как их КПД < 40%. Но на немногих землесосных снарядах давней постройки такие колеса еще эксплуатируются. Но данный тип крыльчаток имеет и преимущества.Они гораздо менее подвержены засорению, и их весьма легко можно защитить от износа стальными накладками. Также отремонтировать данный тип колес можно очень просто.

Полузакрытый тип имеет диск со стороны, которая противоположная всасыванию. Данные типы не применяются в больших грунтовых агрегатах, но применяются в небольших насосах, для которых вопрос о засоряемости является краеугольным камнем.

Закрытые типы выдают наивысший КПД, их применяют на всех современных насосных оборудованиях. Они обладают высокой прочностью, но их защита от износа и ремонт гораздо сложнее, чем полузакрытых и открытых крыльчаток.

Закрытое колесо имеет от двух до шести рабочих лопаток. На его наружной поверхности дисков обычно делают радиальные выступы. Либо выступы, которые повторяют очертание лопаток.

Крыльчатки чаще всего производят цельнолитыми. Но в Соединенных Штатах Америки их иногда производят сварными, из литых деталей. В случае применения трудно обрабатываемых твердых сплавов крыльчатки, иногда, делают с отъемной ступицей, изготовливаемой из более мягкого материала.

1.3 Наиболее часто применяемые виды посадок

Конусная (коническая) посадка– позволяет легко установить и снять крыльчатку с вала насоса. Недостатком такой посадки является менее точное положение крыльчатки относительно корпуса насосного агрегата в продольном направлении, чем при цилиндрической посадке. На вал рабочее колесо посажено жестко, поэтому оно обездвижено. К тому же коническая посадка, как правило, дает большие биения рабочего колеса, а это, в свою очередь, негативно влияет на сальниковые набивки и .

Цилиндрическая посадка – обеспечивает точное расположение крыльчатки на валу. Фиксация колеса на валу производится за счет 1-ой или нескольких шпонок. Данная посадка используется в вихревых насосах, и погружных вихревых насосах. Недостатком такой посадки является потребность точнейшей обработки, как вала насоса, так и самого отверстия в его ступице.

Посадка шестигранная (крестообразная) – как правило, применяется в насосном оборудовании для скважин. Эта посадка обеспечивает простую установку и снятие крыльчатки. Она прочно фиксирует её на валу в оси его вращения. Посредством специальных шайб регулируются зазоры в колесах диффузорах.

Посадка в виде шестигранной звезды -применяется в вертикальных и горизонтальных многоступенчатых высоконапорных насосных агрегатов, в которых крыльчатки изготавливаются из нержавейки. Данная конструкция является самой сложной, она требует высочайшего класса обработки как вала, так и крыльчатки. Она прочно фиксирует рабочее колесо на оси вращения вала. Зазоры в диффузорах регулируются посредством втулок.

2 Причины и симптомы поломки колеса центробежных насосов

Чаще всего причиной поломок рабочего колеса становится кавитация- парообразование и появление пузырьков пара в жидкости, что приводит к эрозии металла, вследствие присутствия в пузырьках жидкости высокой химической агрессивности газа.

Основные причиныпоявления кавитации:

  1. Температура > 60°C
  2. Большая протяженность и недостаточно большой диаметр всасывающего напора.
  3. Неплотные соединения на всасывающем напоре.
  4. Загрязнение всасывающего напора.

Признаки поломки:

  1. Вибрация.
  2. Потрескивания во время всасывания.
  3. Шумы.

Совет:в случае присутствия в работе насоса вышеуказанных признаков, лучше прекратить его использование. Так как кавитация снижает КПД устройства, его напор и производительность, детали насосного агрегата становятся шероховатыми, и в последствии будет необходим ремонт или покупка нового аппарата.

2.1 Ремонт

Если прибор, все же отказался работать, его можно починить своими руками. Для необходимо выполнить его разборку:

  1. Первым шагом с помощью специального съемщика снимают полумуфту.
  2. Следующим шагом до упора разгрузочного диска направляют ротор в сторону, которая производит всасывание.
  3. Помечают расположение стрелки сдвига оси.
  4. Разбирают подшипники, вынимают вкладыши.
  5. Посредством съемщика вытаскивают разгрузочный диск.
  6. При помощи отжимных винтов снимают рабочее колесо с вала.

В случае если материал – сталь, если колесо стерлось, то сперва его направляют, а затем вытачивают на токарном станке. При сильной изношенности колеса его снимают, после чего приваривают новое.

В случае если материал – чугун, если колесо стерлось, то необходимые места заливают медью, а потом протачивают, но чугунные колеса, как правило, просто меняют.

Последним шагом насос собирают обратно в такой последовательности:

  1. Протирают детали центробежного насоса.
  2. Если есть заусенцы или забоины, их устраняют.
  3. Крыльчатку собирают на валу.
  4. Ставят на место разгрузочный диск.
  5. Устанавливают мягкую набивку сальников.
  6. Закручивают гайки.
  7. Обкатывают сальник.
  8. До упора разгрузочного диска в пятку подают ротор.

3 Основные характеристики современных центробежных насосов

Наилучшими представителями современных насосов являются: погружной насос с периферийным рабочим колесом Calpeda серии B-VT, а также, самовсасывающий насосный агрегат 1СВН-80А и электронасос 1АСВН-80А.

3.1 Предназначение насосов CALPEDA B-VT

Насосы CALPEDA B-VT применяют для перекачки чистых (для загрязненных жидкостей можно применить полупогружные насосы Calpeda VAL или Calpeda SC) невзрывоопасных жидкостей, в которых отсутствуют абразивные, взвешенные или высокоагрессивные для материалов, из которых изготовлен насос, частицы.

Благодаря небольшим размерам эти электронасосы весьма хорошо подходят для установки в разных устройствах и аппаратах систем охлаждения, циркуляции и кондиционирования.

Эксплуатационные ограничения насосных агрегатов CALPEDA B-VT

  1. Температура жидкости: для воды <90 °C, для масла < 150°C.
  2. Температура окружающей среды< 40°C.
  3. Непрерывный режим использования.

Самовсасывающее насосное оборудование 1СВН-80А и 1АСВН-80А. применяется для перекачки не загрязненной жидкости: воды, спирта, дизельного топлива, бензина, керосина и тому подобной нейтральной жидкости вязкостью <2⋅10-5 м 2 /с температурой -40 – 50 °Cи плотностью <1000 кг/м 3 .

Насосные агрегаты 1СВН-80А производятся правого и левого вращения, если смотреть со стороны окончания вала. В устройстве левого вращения приводной конец вала располагается со стороны всасывающего патрубка, направление движения вала идёт против часовой стрелки.

В аппарате правого вращения приводное окончание вала расположенное со стороны напорного патрубка, вращение вала идёт по часовой стрелке. Необходимо, чтоб направление движения вала совпадало с направлением стрелки на напорной секции насосного оборудования (проверяется посредством кратковременного пробного пуска привода устройства).

3.2 Моделирование рабочего колеса в FlowVision (видео)

Изобретение относится к области центробежных насосов. Рабочее колесо центробежного насоса содержит, по меньшей мере, две лопасти с различным углом входа β л1 . Все лопасти рабочего колеса расположены с постоянным внешним шагом α и имеют одинаковый угол выхода β л2 . В частном случае каждой лопасти соответствует лопасть с таким же углом входа β л1 , расположенная симметрично относительно центра рабочего колеса. Рабочее колесо может включать три пары лопастей с различными углами входа β л1 . Достигается прирост КПД насоса в области значений подачи, отличных от расчетного значения. 4 з.п. ф-лы, 3 ил.

Изобретение относится к области центробежных насосов, в частности, к конструированию их рабочих колес, и может быть использовано для повышения эффективности работы насосов в системах теплоснабжения и водоснабжения.

Лопастная система рабочих колес насосов профилируется для расчетного значения подачи насоса исходя из условия снижения гидравлических потерь. Минимизация гидравлических потерь позволяет обеспечить максимальный КПД насоса в оптимальном режиме его работы, соответствующем расчетному значению подачи.

Основные закономерности для профилирования лопастной системы рабочего колеса центробежного насоса изложены в издании: М.Д. АЙЗЕНШТЕЙН Центробежные насосы для нефтяной промышленности. - М.: Государственное научно-техническое издательство нефтяной и горно-топливной литературы, 1957. Однако рабочее колесо, спроектированное в соответствии с указанным источником, будет обеспечивать минимальные гидравлические потери, т.е. высокое значение КПД насоса, только в узкой области вблизи расчетных значений подачи насоса.

Методика построения лопастной системы центробежного насоса получила развитие в работе: А.Н. МАШИН. Профилирование проточной части рабочих колес центробежных насосов. - М.: Московский Ордена Ленина Энергетический Институт, 1976. В данной публикации детально раскрыта методика расчета всех параметров лопастной системы, при этом насос, оснащенный таким рабочем колесом, также показывает высокую эффективность только при работе в оптимальном режиме или вблизи него.

Таким образом, известные из уровня техники рабочие колеса не позволяют эффективно использовать насос при значениях подачи, значительно отличающихся от расчетных.

Однако в реальных условиях, в частности в системах теплоснабжения и водоснабжения, значительную часть времени насос эксплуатируется в режиме, отличном от оптимального, например при значении подачи меньше расчетного. В таких условиях КПД насоса существенно снижается. Следует отметить, что производитель устанавливает расчетное значение подачи ближе к максимальному ее значению, поскольку насос должен обеспечить устойчивую работу во всем заявленном диапазоне подачи. Следовательно, оптимальный режим работы насоса не всегда соответствует режиму эксплуатации, а средневзвешенный по времени КПД насоса может оказаться значительно ниже расчетного.

Задачей изобретения является повышение КПД насоса в области значений подачи насоса, отличающихся от расчетного значения подачи.

Для решения этой задачи предлагается рабочее колесо центробежного насоса, которое содержит, по меньшей мере, две лопасти, имеющие различные углы входа. Все лопасти при этом могут иметь одинаковый угол выхода. Все лопасти могут располагаться с постоянным внешним шагом. Каждой лопасти может соответствовать лопасть с таким же углом входа, расположенная симметрично относительно центра рабочего колеса, при этом указанные лопасти образуют пару. Рабочее колесо может включать три пары лопастей с различными углами входа.

При использовании изобретения достигаются следующие технические результаты:

Повышение КПД насоса в области значений подачи насоса, отличающихся от расчетного значения подачи насоса;

Повышение средневзвешенного по времени КПД насоса.

Описание осуществления изобретения поясняется ссылками на фигуры:

фиг.1 - исходное рабочее колесо;

фиг.2 - модернизированное рабочее колесо;

фиг.3 - зависимость КПД насоса от подачи для исходного и модернизированного колес.

Лопасти рабочего колеса, изображенного на фиг.1, имеют рабочую поверхность, представленную на чертеже линией L, которая обозначается в дальнейшем как внешняя линия лопасти. Входные кромки лопастей 1 лежат на окружности входа, имеющий диаметр D1. Выходные кромки лопастей 2 лежат на окружности выхода с диаметром D2, как правило, совпадающим с внешним диаметром рабочего колеса. Угол между выходными кромками лопастей α, в дальнейшем - внешний шаг, одинаков для всех лопастей.

Касательная к внешней линии лопасти в точке ее пересечения с окружностью входа и касательная к окружности входа в указанной точке образуют угол входа β 1л. Касательная к внешней линии лопасти в точке ее пересечения с окружностью выхода и касательная к окружности выхода в указанной точке образуют угол выхода β 2л.

Значения параметров D1, D2, β 1л и β 2л определены для расчетной подачи насоса при условии максимизации КПД насоса, а также с учетом конструкторских ограничений, и одинаковы для всех лопастей. Поскольку, как показано в приведенной выше работе А.Н. Машина, сопряжение углов входа и выхода может быть осуществлено плавной кривой произвольной формы, то можно считать, что указанные параметры определяют форму и расположение лопастей рабочего колеса. Все лопасти такого рабочего колеса, в дальнейшем - исходные лопасти, одинаковы.

Лопасти рабочего колеса, спроектированного для другого значения подачи насоса, будут иметь иные углы входа и выхода, причем для более низкого значения подачи углы входа и выхода уменьшаются, а для более высокого значения подачи - соответственно увеличиваются.

Исследования показали, что при замене части исходных лопастей лопастями, имеющими другой угол входа, КПД насоса возрастает в области подачи, для которой спроектированы добавленные лопасти. При этом угол выхода заменяющих лопастей целесообразно сохранить равным углу выхода исходных лопастей. Диаметры окружностей входа и выхода, устанавливаемые с учетом конструкторских ограничений, для заменяющих лопастей также сохраняются равными соответствующим значениям этих параметров, определенных для исходных лопастей. Внешний шаг остается постоянным для всех лопастей, и его значение не изменяется.

При осуществлении такой модернизации рабочего колеса КПД насоса на оптимальном режиме работы, для которого разработаны исходные лопасти, ожидаемо снижается. Однако прирост КПД насоса в области низких значений подачи превышает его падение в области оптимального режима, что позволяет получить более высокий средневзвешенный по времени работы КПД насоса.

На фиг.2 представлено модернизированное рабочее колесо, имеющее три пары лопастей. Каждая пара образуется лопастями, расположенными симметрично относительно центра рабочего колеса, при этом лопасти каждой пары имеют одинаковый угол входа, в то время как углы входа лопастей, входящих в разные пары, различны. Такое колесо показывает наилучшие результаты, однако является частным случаем изобретения.

На фиг.3 представлена зависимость КПД насоса от режима его работы для исходного и модернизированного колеса. Повышение КПД насоса в области низкой подачи до 4,5% при применении модернизированного колеса сопровождается незначительным его снижением на оптимальном режиме, что подтверждает достижение заявленного технического результата.

1. Рабочее колесо центробежного насоса, отличающееся тем, что содержит, по меньшей мере, две лопасти, имеющие различный угол входа.

2. Рабочее колесо по п.1, отличающееся тем, что все лопасти имеют одинаковый угол выхода.

3. Рабочее колесо по п.1, отличающееся тем, что все лопасти расположены с постоянным внешним шагом.

4. Рабочее колесо по п.1, отличающееся тем, что каждой лопасти соответствует лопасть с таким же углом входа, расположенная симметрично относительно центра рабочего колеса, при этом указанные лопасти образуют пару.

5. Рабочее колесо по п.4, отличающееся тем, что включает три пары лопастей с различными углами входа.

Похожие патенты:

Изобретение относится к центробежному насосу, содержащему множество каналов, по меньшей мере один элемент которых имеет один или более неосесимметричных контуров каналов, образованных по меньшей мере частично лопастями или лопатками неравной высоты, и способы изготовления и применения таких насосов для перекачивания текучих сред, например в и из буровых скважин (стволов скважин), хотя изобретение применимо к насосам, сконструированным для любого предполагаемого использования, включая, но не ограничиваясь так называемыми работами по транспортировке текучих сред на поверхность.

Изобретение относится к гидромашиностроению, преимущественно к нефтяной промышленности, и может быть использовано при добыче из скважин пластовой жидкости, воды и других жидких сред с широким диапазоном изменения механических примесей

Изобретение относится к насосостроению, в частности к насосам центробежного типа с рабочим осерадиальным колесом тоннельного тина с односторонним осевым входом. Центробежный насос содержит корпус с входным патрубком, переходящим в центральную часть корпуса. Центральная часть корпуса переходит в напорный патрубок. В центральной части корпуса установлено рабочее колесо тоннельного типа. На переднем кольцеобразном диске колеса выполнены кольцевые каналы. На внутренней стенке центральной части корпуса перед входом в напорный патрубок выполнена ступенька. На внутренней стороне крышки корпуса, установленной со стороны входного патрубка, выполнены кольцевые буртики. Изобретение направлено на увеличение КПД и максимально допустимой скорости вращения и уменьшение лобового сопротивления вращению и уровня шума. 3 ил.

Изобретение относится к насосостроению, а именно к химическим горизонтальным центробежным электронасосным агрегатам. Способ производства агрегата заключается в том, что изготавливают сборный корпус насоса, ротор с валом и рабочим колесом, а также силовой узел. Корпус ходовой части насоса оснащают подшипниковыми опорами. Корпус проточной части насоса выполняют с проточной полостью, достаточной для размещения в ней рабочего колеса и спирального сборника. Рабочее колесо выполняют в виде многозаходной крыльчатки закрытого типа с основным и покрывным дисками. За основным диском располагают гидрозатвор в виде автономного диска с импеллером и обрамляющий его по контуру кольцевой съемный элемент. Радиус импеллера гидрозатвора меньше радиуса колеса. Основной диск колеса снабжают кольцевым гребнем. Гребень образует со стенкой ступицы колеса кольцевой канал, сообщенный с гидрозатвором и посредством сквозного отверстия в основном диске напроток с объемом колеса. Осуществляют сборку насоса и монтаж на опорной платформе насоса и привода с помощью силовых полумуфт. После сборки электронасосного агрегата выполняют испытания. Группа изобретений направлена на повышение ресурса, долговечности, надежности работы, защиты от протечек перекачиваемых сред и ядовитых испарений в атмосферу при пониженной трудо-, материало- и энергоемкости производства. 4 н. и 21 з.п. ф-лы, 7 ил.

Изобретение относится к насосостроению, а именно к электронасосным агрегатам, предназначенным для перекачивания химически агрессивных жидкостей. Агрегат содержит электродвигатель, центробежный насос и силовую муфту. Насос выполнен одноступенчатым, консольного типа, содержит корпус с корпусами ходовой и проточной частей. Корпус проточной части включает объединенный с напорным патрубком корпус сборника с кольцевым уступообразным гребнем, тыльную стенку из сопряженных кольцевого гребня корпуса сборника и уступообразного кольцевого элемента тыльной стенки, а также съемную заходную крышку с подводящим осевым патрубком. Корпус ходовой части снабжен картером и подшипниковыми опорами. Рабочее колесо открытого типа выполнено в виде многозаходной крыльчатки, включающей снабженный системой лопаток основной диск со ступицей и по контуру кольцевым гребнем. Гребень выполнен с внешним радиусом, конгруэнтным ответному внутреннему радиусу кольцевого уступообразного гребня. Диск наделен системой лучевидных лопаток, образующих импеллер. Насос имеет гидрозатвор в виде установленного на валу дополнительного автономного диска, снабженного импеллером с системой лучевидных лопаток. Радиус импеллера выполнен меньше радиуса рабочего колеса. Изобретение направлено на повышение защиты от протечек, долговечности и надежности работы агрегата, снижение загрязнения воздуха ядовитыми испарениями. 12 з.п. ф-лы, 5 ил.

Изобретение относится к насосостроению, а именно к конструкциям пульповых центробежных насосов вертикального типа. Насос содержит корпус, ротор с валом и рабочее колесо открытого типа. Рабочее колесо содержит основной диск с системой криволинейных лопаток, разделенных межлопаточными каналами. Внутренняя поверхность проточной полости корпуса насоса и поверхности рабочего колеса покрыты защитным слоем полимерного износостойкого материала. Диск и лопатки рабочего колеса выполнены комбинированной конструкции, состоящей из формообразующего, преимущественно, пластинчатого силового каркаса и указанного защитного слоя. Защитный слой нанесен с двух сторон на упомянутые элементы каркаса с возможностью взаимной попарной самоанкеровки оппозитных участков каркаса и лопаток. Каркас диска и лопатки снабжены перфорацией с определенным отношением суммарных площадей поперечного сечения перфорации и заполняющих ее полимерных перемычек, взаимно анкерующих защитные слои, к неперфорированной площади каркаса. Диаметром силовой каркас диска принят менее проектного диаметра рабочего колеса минимум на две исходные контурные толщины защитного слоя. Высота каркаса лопаток принята менее проектной высоты лопатки на исходную контурную толщину защитного слоя. Изобретение направлено на повышение ресурса, надежности работы пульпового насоса, эффективности перекачивания абразивных жидких сред. 11 з.п. ф-лы, 2 ил.

Изобретение относится к нефтяному машиностроению и может быть использовано в многоступенчатых центробежных погружных насосах для откачки пластовой жидкости с высоким содержанием газа. Диспергирующая ступень погружного многоступенчатого центробежного насоса содержит направляющий аппарат. Последний включает нижний и верхний диск с лопатками, полуоткрытое рабочее колесо, которое содержит ведущий диск с лопастями. В ведущем диске рабочего колеса изготовлена сквозная кольцевая проточка. Ширина проточки составляет от двух до десяти процентов максимального наружного диаметра лопастей. В каждой лопасти ведущего диска изготовлен кольцевой паз. Диаметр нижнего диска направляющего аппарата составляет не более восьмидесяти пяти процентов от наружного диаметра лопаток. На входе в направляющий аппарат в каждой лопатке изготовлен, по крайней мере, один кольцевой вырез. Изобретение направлено на улучшение диспергирующих свойств ступени и повышение надежности ее работы. 6 з.п. ф-лы, 7 ил.

Изобретение относится к области центробежных насосов

Существует много задач по перекачиванию различных жидкостей, например: чистая вода, дренажные сточные воды, фекальные воды, воды с большим содержанием примесей небольшого размера (1-3 мм), шламовые воды с большим содержанием крупных частиц (до 20-30 мм), воды с содержанием длинноволокнистых включений, жидкости с большим содержанием абразива, различные нефтепродукты, химически активные жидкости.И для решения каждой задачи существует своё оптимальное решение, а именно рабочее колесо определенного вида, позволяющее работать насосу с максимальным КПД. По форм-фактору центробежные рабочие колёса делятся на 2 группы: рабочие колёса открытого типа и рабочие колёса закрытого типа. И каждые, в свою очередь, могут иметь различное количество лопастей. Рабочие колёса закрытого типа в погружных насосах
В погружных дренажных и фекальных насосах колёса закрытого типа отличаются от аналогичных колес в центробежных горизонтальных поверхностных насосах для чистых жидкостей.В погружных насосах используются колёса закрытого типа с большим свободным проходом, чтобы колесо не забивалось крупными частицами (например, фекальными массами и т.п.). В консольных наружных насосах для чистых жидкостей используются закрытые колёса с небольшим свободным проходом, т.к. они обладают максимально возможным КПД и напором, что важно например для водоснабжения.

По заявке клиента, компания «Электрогидромаш» поставит запасные части к насосам собственного производства: Х, АХ, АХП, АНС 60, АНС 130, С569М, С245 . А так же к насосам различных типов: Д, 1Д, СДВ, СМ, СД, ЦНС, ВК, К, КМ, НКУ, КС, НК, СМ, ЦВК, СЭ, Ш, НМШ, ВВН, и многим другим насосам. В частности, поставляются такие узлы, как ротор в сборе, рабочее колесо, уплотняющее кольцо, вал, втулка защитная, направляющий аппарат, корпус насоса.

Что дает установка новых запчастей:

Запасные части насосов — это не только продление срока службы агрегата , но и существенная экономия денег . Можно привести такой пример: у насоса Д 320/50 с электродвигателем мощностью 75 кВт за 5 лет работы на водопроводе КПД снизился на 10%. Это привело к незначительному спаду подачи (с 320 до 304 м3/ч) и напора (с 50 до 47,5 м). Однако соответствующие потери электроэнергии оказались весьма существенными: за год они составили 65 700 кВт/ч, т. е. 45 990 руб. , что значительно превосходит стоимость нового колеса (4600 руб. )

ПРОЕКТИРОВАНИЕ ЦЕНТРОБЕЖНЫХ НАСОСОВ

Общие положения

Проектирование производится на основании накопленного опыта создания различных типов насосов. Причем для различных областей применения насосов используется свой подход. В настоящей главе рассматриваются вопросы проектирования стационарных насосов общепромышленного назначения. Отличительной особенностью является их работа в до кавитации, что связано с их продолжительной эксплуатацией и необходимостью исключить кавитационные разрушения.

Несмотря на отличия в обосновании кинематических параметров и геометрических размеров проточной части, существует общий подход в проектировании насосов различных типов. Проектирование включает составление и анализ технического задания, выбор основных параметров и гидравлические расчеты, выполнение эскизной компоновки машины, проведение поверочных и уточняющих расчетов, выполнение чертежей общего вида машины и отдельных его деталей.

Графическая часть проекта и пояснительная записка выполняются в соответствии с ГОСТ 2.109-73, ГОСТ 2.305-68(СТ СЭВ 367-76), ГОСТ 2.108-68, ГОСТ 2.307-68, ГОСТ 2.308-68, ГОСТ 10356-63, ГОСТ 2789-73, ГОСТ 2.309-79, ГОСТ 2.104-68 (СТ СЭВ 140-74, 365-76), ГОСТ 2.105-68 и ГОСТ 106-68.

Техническое задание на проектирование

Задание на проектирование лопастного центробежного насоса включает следующие основные данные:

а) физические свойства перекачиваемой среды:

r - плотность перекачиваемой жидкости, кг/м 3 ;

m - коэффициент динамической вязкости, Па С;

Р нп - давление насыщенных паров рабочей жидкости, ПА (физические свойства перекачиваемой среды заданы для расчетной температуры Т 0 К);

б) параметры насоса на расчетном режиме:

Н - напор, м;

Q - объемный расход жидкости через насос, м 3 /с;

в) дополнительно данные. Наряду с основными сведениями о насосе даются дополнительные данные, которые позволяют правильно подойти к проектированию насоса.

К таким данным относятся:

Сведения о назначении насоса и область его применения;

Возможные границы изменения эксплуатационных условий;

Технические требования (КПД насоса, масса, габариты);

Эргономические (уровень шума, дб, вибрации, мм или м/с 2 , величина

внешней утечки, м 3 /с);

Показатель технической эстетики и физиологические показатели,

характеризующие удобство обслуживания насоса;

Экономические (стоимость насоса или его монтажа, обслуживания и

ремонта), ресурс, доступность отдельных узлов для обслуживания и др..

Расчет основных параметров и геометрических

размеров рабочего колеса насоса

2.3.1. Определение частоты вращения колеса


Частота вращения рабочего колеса определяется по формуле Руднева С.С. /16/

где С - кавитационный коэффициент быстроходности выбирается в

зависимости от требований к насосу;

Для длительной работы по 1-му критическому режиму

кавитации С 1 = 800¸1100;

Для работы насоса на втором режиме кавитации

С 2 = 1000¸1800(200).

Применение шнекоцентробежной ступени позволяет принимать значения С 2 =1800¸3000 (5000)

- расчетное значение подпора;

Dh - подпор на входе в насос, Dh =1,5¸20 м.

Коэффициент 1,15¸1,3 по ГОСТ 6134-71.

2.3.2. Определение коэффициента быстроходности

. (2.2)

2.3.3. Определение диаметра входа в колесо D вх

Сводится к определению приведенного диаметра по среднестатическим значениям коэффициента, входящего в формулу:

- приведенный диаметр рабочего колеса.

Окончательно

. (2.4)

Коэффициент К 0 выбирается из следующих соображений /16/:

1. Рабочее колесо имеет большой кавитационный запас и кавитация в нем исключена. В этом случае из условия получения минимума относительной скорости входа жидкости в рабочее колесо

К 0 =3,3¸3,7.

2. В случае расчета насоса по 1-му критическому режиму кавитации К 0 =4,2¸4,6. Причем, большие значения выбираются в случае возможной работы насоса при перегрузке.

3. При расчете по 2-му критическому режиму кавитации К 0 =4¸6 в зависимости от значения С 2 . Так, например, по данным В.В.Шемеля /16/

К 0 = 4,3¸4,65, С 2 = 1230¸1400,

К 0 = 5,2¸5,7, С 2 =1500¸2500.

Диаметр втулки D вm определяется по приближенной формуле:

где N - мощность насоса, кВт;

а = 0,120¸0,130 - для консольных насосов;

а = 0,150¸0,160 - для многоступенчатых насосов.

2.3.4. Определение ширины колеса в 2 на выходе

Ширина колеса в 2 определяется на основании статистических данных по формуле

где для n s £120;

для n s >120.

Полученное значение в 2 является предварительным и будет уточняться при последующем профилировании меридионального сечения рабочего колеса.

2.3.5. Приближенное определение наружного диаметра

рабочего колеса D 2

Размер диаметра выхода рабочего колеса D 2 зависит от числа лопаток в колесе z и от угла установки лопаток на выходе b л2 .

В первом приближении размер D 2 определяется на основании статистических данных по формуле /16/

где ;

.

2.3.6. Выбор числа лопаток z

Число лопаток выбирают по статистическим данным в зависимости от коэффициента быстроходности n s и размеров колеса /16/:

n s = 50¸60; 60¸180; 180¸350; 350¸600;

z = 9¸8; 8¸6; 6; 6¸5.

Для насосов малых размеров выбирают меньшее число лопаток, чтобы уменьшить стеснение потока лопатками, толщина которых с уменьшением размеров колеса относительно возрастает. Этим добиваются улучшения всасывающей способности колеса и уменьшения гидравлических потерь. Иногда у тихоходных колес часть лопаток выполняют укороченными со стороны всасывания.

2.3.7. Выбор толщины лопаток s

Толщина лопаток s определяется технологическими соображениями и прочностью, а иногда требования износостойкости (например, у землесосов). Лопатки уточняются вблизи входа для уменьшения стеснения потока (обычно в 2 раза) s 1

Т а б л и ц а 2.1

К выбору толщины лопаток рабочего колеса