Relationship between cosine and tangent. Group II. Addition formulas. Relationship between tangent and cotangent

21.09.2019 Heating

In this article we will talk about universal trigonometric substitution. It involves expressing the sine, cosine, tangent and cotangent of any angle through the tangent of a half angle. Moreover, such a replacement is carried out rationally, that is, without roots.

First, we will write down formulas expressing sine, cosine, tangent and cotangent in terms of the tangent of a half angle. Next we will show the derivation of these formulas. In conclusion, let's look at a few examples of using the universal trigonometric substitution.

Page navigation.

Sine, cosine, tangent and cotangent through the tangent of a half angle

First, let's write down four formulas expressing sine, cosine, tangent and cotangent of an angle through the tangent of a half angle.

The indicated formulas are valid for all angles at which the tangents and cotangents included in them are defined:

Deriving formulas

Let us analyze the derivation of formulas expressing sine, cosine, tangent and cotangent of an angle through the tangent of a half angle. Let's start with the formulas for sine and cosine.

Let's represent sine and cosine using the double angle formulas as And respectively. Now the expressions And we write it in the form of fractions with a denominator of 1 as And . Next, based on the main trigonometric identity, we replace the units in the denominator with the sum of the squares of sine and cosine, after which we get And . Finally, we divide the numerator and denominator of the resulting fractions by (its value is different from zero provided ). As a result, the entire chain of actions looks like this:


And

This completes the derivation of formulas expressing sine and cosine through the tangent of a half angle.

It remains to derive formulas for tangent and cotangent. Now, taking into account the formulas obtained above, both formulas and , we immediately obtain formulas expressing the tangent and cotangent through the tangent of the half angle:

So, we have derived all the formulas for the universal trigonometric substitution.

Examples of using universal trigonometric substitution

First, let's look at an example of using universal trigonometric substitution when transforming expressions.

Example.

Give an expression to an expression containing only one trigonometric function.

Solution.

Answer:

.

Bibliography.

  • Algebra: Textbook for 9th grade. avg. school/Yu. N. Makarychev, N. G. Mindyuk, K. I. Neshkov, S. B. Suvorova; Ed. S. A. Telyakovsky.- M.: Education, 1990.- 272 p.: ill.- isbn 5-09-002727-7
  • Bashmakov M. I. Algebra and the beginnings of analysis: Textbook. for 10-11 grades. avg. school - 3rd ed. - M.: Education, 1993. - 351 p.: ill. - ISBN 5-09-004617-4.
  • Algebra and the beginning of analysis: Proc. for 10-11 grades. general education institutions / A. N. Kolmogorov, A. M. Abramov, Yu. P. Dudnitsyn and others; Ed. A. N. Kolmogorov. - 14th ed. - M.: Education, 2004. - 384 pp.: ill. - ISBN 5-09-013651-3.
  • Gusev V. A., Mordkovich A. G. Mathematics (a manual for those entering technical schools): Proc. allowance.- M.; Higher school, 1984.-351 p., ill.

Trigonometric identities- these are equalities that establish a relationship between sine, cosine, tangent and cotangent of one angle, which allows you to find any of these functions, provided that any other is known.

tg \alpha = \frac(\sin \alpha)(\cos \alpha), \enspace ctg \alpha = \frac(\cos \alpha)(\sin \alpha)

tg \alpha \cdot ctg \alpha = 1

This identity says that the sum of the square of the sine of one angle and the square of the cosine of one angle is equal to one, which in practice makes it possible to calculate the sine of one angle when its cosine is known and vice versa.

When converting trigonometric expressions, this identity is very often used, which allows you to replace the sum of the squares of the cosine and sine of one angle with one and also perform the replacement operation in the reverse order.

Finding tangent and cotangent using sine and cosine

tg \alpha = \frac(\sin \alpha)(\cos \alpha),\enspace

These identities are formed from the definitions of sine, cosine, tangent and cotangent. After all, if you look at it, then by definition the ordinate y is a sine, and the abscissa x is a cosine. Then the tangent will be equal to the ratio \frac(y)(x)=\frac(\sin \alpha)(\cos \alpha), and the ratio \frac(x)(y)=\frac(\cos \alpha)(\sin \alpha)- will be a cotangent.

Let us add that only for such angles \alpha at which the trigonometric functions included in them make sense, the identities will hold, ctg \alpha=\frac(\cos \alpha)(\sin \alpha).

For example: tg \alpha = \frac(\sin \alpha)(\cos \alpha) is valid for angles \alpha that are different from \frac(\pi)(2)+\pi z, A ctg \alpha=\frac(\cos \alpha)(\sin \alpha)- for an angle \alpha other than \pi z, z is an integer.

Relationship between tangent and cotangent

tg \alpha \cdot ctg \alpha=1

This identity is valid only for angles \alpha that are different from \frac(\pi)(2) z. Otherwise, either cotangent or tangent will not be determined.

Based on the above points, we obtain that tg \alpha = \frac(y)(x), A ctg \alpha=\frac(x)(y). It follows that tg \alpha \cdot ctg \alpha = \frac(y)(x) \cdot \frac(x)(y)=1. Thus, the tangent and cotangent of the same angle at which they make sense are mutually inverse numbers.

Relationships between tangent and cosine, cotangent and sine

tg^(2) \alpha + 1=\frac(1)(\cos^(2) \alpha)- the sum of the square of the tangent of the angle \alpha and 1 is equal to the inverse square of the cosine of this angle. This identity is valid for all \alpha other than \frac(\pi)(2)+ \pi z.

1+ctg^(2) \alpha=\frac(1)(\sin^(2)\alpha)- the sum of 1 and the square of the cotangent of the angle \alpha is equal to the inverse square of the sine given angle. This identity is valid for any \alpha different from \pi z.

Examples with solutions to problems using trigonometric identities

Example 1

Find \sin \alpha and tg \alpha if \cos \alpha=-\frac12 And \frac(\pi)(2)< \alpha < \pi ;

Show solution

Solution

The functions \sin \alpha and \cos \alpha are related by the formula \sin^(2)\alpha + \cos^(2) \alpha = 1. Substituting into this formula \cos \alpha = -\frac12, we get:

\sin^(2)\alpha + \left (-\frac12 \right)^2 = 1

This equation has 2 solutions:

\sin \alpha = \pm \sqrt(1-\frac14) = \pm \frac(\sqrt 3)(2)

By condition \frac(\pi)(2)< \alpha < \pi . In the second quarter the sine is positive, so \sin \alpha = \frac(\sqrt 3)(2).

In order to find tan \alpha, we use the formula tg \alpha = \frac(\sin \alpha)(\cos \alpha)

tg \alpha = \frac(\sqrt 3)(2) : \frac12 = \sqrt 3

Example 2

Find \cos \alpha and ctg \alpha if and \frac(\pi)(2)< \alpha < \pi .

Show solution

Solution

Substituting into the formula \sin^(2)\alpha + \cos^(2) \alpha = 1 given number \sin \alpha=\frac(\sqrt3)(2), we get \left (\frac(\sqrt3)(2)\right)^(2) + \cos^(2) \alpha = 1. This equation has two solutions \cos \alpha = \pm \sqrt(1-\frac34)=\pm\sqrt\frac14.

By condition \frac(\pi)(2)< \alpha < \pi . In the second quarter the cosine is negative, so \cos \alpha = -\sqrt\frac14=-\frac12.

In order to find ctg \alpha , we use the formula ctg \alpha = \frac(\cos \alpha)(\sin \alpha). We know the corresponding values.

ctg \alpha = -\frac12: \frac(\sqrt3)(2) = -\frac(1)(\sqrt 3).

One of the areas of mathematics that students struggle with the most is trigonometry. It is not surprising: in order to freely master this area of ​​​​knowledge, you need spatial thinking, the ability to find sines, cosines, tangents, cotangents using formulas, simplify expressions, and be able to use the number pi in calculations. In addition, you need to be able to use trigonometry when proving theorems, and this requires either a developed mathematical memory or the ability to derive complex logical chains.

Origins of trigonometry

Getting acquainted with this science should begin with the definition of sine, cosine and tangent of an angle, but first you need to understand what trigonometry does in general.

Historically, the main object of study in this branch of mathematical science was right triangles. The presence of an angle of 90 degrees makes it possible to carry out various operations, allowing you to determine the values ​​of all parameters of the figure in question using two sides and one angle or two angles and one side. In the past, people noticed this pattern and began to actively use it in the construction of buildings, navigation, astronomy and even in art.

First stage

Initially, people talked about the relationship between angles and sides exclusively using the example of right triangles. Then special formulas were discovered that made it possible to expand the boundaries of use in Everyday life this branch of mathematics.

The study of trigonometry in school today begins with right triangles, after which students use the acquired knowledge in physics and solving abstract problems. trigonometric equations, work with which begins in high school.

Spherical trigonometry

Later, when science reached the next level of development, formulas with sine, cosine, tangent, and cotangent began to be used in spherical geometry, where different rules apply, and the sum of the angles in a triangle is always more than 180 degrees. This section is not studied in school, but it is necessary to know about its existence, at least because the earth’s surface, and the surface of any other planet, is convex, which means that any surface marking will be “arc-shaped” in three-dimensional space.

Take the globe and the thread. Attach the thread to any two points on the globe so that it is taut. Please note - it has taken on the shape of an arc. Spherical geometry deals with such forms, which is used in geodesy, astronomy and other theoretical and applied fields.

Right triangle

Having learned a little about the ways of using trigonometry, let's return to basic trigonometry in order to further understand what sine, cosine, tangent are, what calculations can be performed with their help and what formulas to use.

The first step is to understand the concepts related to a right triangle. First, the hypotenuse is the side opposite the 90 degree angle. It is the longest. We remember that according to the Pythagorean theorem, its numerical value is equal to the root of the sum of the squares of the other two sides.

For example, if the two sides are 3 and 4 centimeters respectively, the length of the hypotenuse will be 5 centimeters. By the way, the ancient Egyptians knew about this about four and a half thousand years ago.

The two remaining sides, which form a right angle, are called legs. In addition, we must remember that the sum of the angles in a triangle in a rectangular coordinate system is equal to 180 degrees.

Definition

Finally, with a firm understanding of the geometric basis, one can turn to the definition of sine, cosine and tangent of an angle.

The sine of an angle is the ratio of the opposite side (i.e. the side located opposite desired angle) to the hypotenuse. The cosine of an angle is the ratio of the adjacent side to the hypotenuse.

Remember that neither sine nor cosine can be greater than one! Why? Because the hypotenuse is by default the longest. No matter how long the leg is, it will be shorter than the hypotenuse, which means their ratio will always be less than one. Thus, if in your answer to a problem you get a sine or cosine with a value greater than 1, look for an error in the calculations or reasoning. This answer is clearly incorrect.

Finally, the tangent of an angle is the ratio of the opposite side to the adjacent side. Dividing the sine by the cosine will give the same result. Look: according to the formula, we divide the length of the side by the hypotenuse, then divide by the length of the second side and multiply by the hypotenuse. Thus, we get the same relationship as in the definition of tangent.

Cotangent, accordingly, is the ratio of the side adjacent to the corner to the opposite side. We get the same result by dividing one by the tangent.

So, we have looked at the definitions of what sine, cosine, tangent and cotangent are, and we can move on to formulas.

The simplest formulas

In trigonometry you cannot do without formulas - how to find sine, cosine, tangent, cotangent without them? But this is exactly what is required when solving problems.

The first formula that you need to know when starting to study trigonometry says that the sum of the squares of the sine and cosine of an angle is equal to one. This formula is a direct consequence of the Pythagorean theorem, but it saves time if you need to know the size of the angle rather than the side.

Many students cannot remember the second formula, which is also very popular when solving school problems: the sum of one and the square of the tangent of an angle is equal to one divided by the square of the cosine of the angle. Take a closer look: this is the same statement as in the first formula, only both sides of the identity were divided by the square of the cosine. It turns out that a simple mathematical operation makes the trigonometric formula completely unrecognizable. Remember: knowing what sine, cosine, tangent and cotangent are, transformation rules and several basic formulas, you can at any time derive the required more complex formulas on a sheet of paper.

Formulas for double angles and addition of arguments

Two more formulas that you need to learn are related to the values ​​of sine and cosine for the sum and difference of angles. They are presented in the figure below. Please note that in the first case, sine and cosine are multiplied both times, and in the second, the pairwise product of sine and cosine is added.

There are also formulas associated with arguments in the form double angle. They are completely derived from the previous ones - as a training try to get them yourself by taking the alpha angle equal to the angle beta.

Finally, note that double angle formulas can be rearranged to reduce the power of sine, cosine, tangent alpha.

Theorems

The two main theorems in basic trigonometry are the sine theorem and the cosine theorem. With the help of these theorems, you can easily understand how to find the sine, cosine and tangent, and therefore the area of ​​the figure, and the size of each side, etc.

The sine theorem states that by dividing the length of each side of a triangle by the opposite angle, we get same number. Moreover, this number will be equal to two radii of the circumscribed circle, that is, the circle containing all the points of a given triangle.

The cosine theorem generalizes the Pythagorean theorem, projecting it onto any triangles. It turns out that from the sum of the squares of the two sides, subtract their product multiplied by the double cosine of the adjacent angle - the resulting value will be equal to the square of the third side. Thus, the Pythagorean theorem turns out to be a special case of the cosine theorem.

Careless mistakes

Even knowing what sine, cosine and tangent are, it is easy to make a mistake due to absent-mindedness or an error in the simplest calculations. To avoid such mistakes, let's take a look at the most popular ones.

Firstly, you shouldn't convert fractions to decimals until you get the final result - you can leave the answer as common fraction, unless otherwise stated in the conditions. Such a transformation cannot be called a mistake, but it should be remembered that at each stage of the problem new roots may appear, which, according to the author’s idea, should be reduced. In this case, you will waste your time on unnecessary mathematical operations. This is especially true for values ​​such as the root of three or the root of two, because they are found in problems at every step. The same goes for rounding “ugly” numbers.

Further, note that the cosine theorem applies to any triangle, but not the Pythagorean theorem! If you mistakenly forget to subtract twice the product of the sides multiplied by the cosine of the angle between them, you will not only get a completely wrong result, but you will also demonstrate a complete lack of understanding of the subject. This is worse than a careless mistake.

Thirdly, do not confuse the values ​​for angles of 30 and 60 degrees for sines, cosines, tangents, cotangents. Remember these values, because sine is 30 degrees equal to cosine 60, and vice versa. It is easy to confuse them, as a result of which you will inevitably get an erroneous result.

Application

Many students are in no hurry to start studying trigonometry because they do not understand its practical meaning. What is sine, cosine, tangent for an engineer or astronomer? These are concepts with which you can calculate the distance to distant stars, predict the fall of a meteorite, or send a research probe to another planet. Without them, it is impossible to build a building, design a car, calculate the load on a surface or the trajectory of an object. And these are just the most obvious examples! After all, trigonometry in one form or another is used everywhere, from music to medicine.

Finally

So you're sine, cosine, tangent. You can use them in calculations and successfully solve school problems.

The whole point of trigonometry comes down to the fact that using the known parameters of a triangle you need to calculate the unknowns. There are six parameters in total: the length of three sides and the size of three angles. The only difference in the tasks lies in the fact that different input data are given.

You now know how to find sine, cosine, tangent based on the known lengths of the legs or hypotenuse. Since these terms mean nothing more than a ratio, and a ratio is a fraction, the main goal of a trigonometry problem is to find the roots of an ordinary equation or system of equations. And here regular school mathematics will help you.

The concepts of sine (), cosine (), tangent (), cotangent () are inextricably linked with the concept of angle. In order to have a good understanding of these, at first glance, complex concepts (which cause a state of horror in many schoolchildren), and to make sure that “the devil is not as terrible as he is painted,” let’s start from the very beginning and understand the concept of an angle.

Angle concept: radian, degree

Let's look at the picture. The vector has “turned” relative to the point by a certain amount. So the measure of this rotation relative to the initial position will be corner.

What else do you need to know about the concept of angle? Well, of course, angle units!

Angle, in both geometry and trigonometry, can be measured in degrees and radians.

Angle (one degree) is the central angle in a circle subtended by a circular arc equal to part of the circle. Thus, the entire circle consists of “pieces” of circular arcs, or the angle described by the circle is equal.

That is, the figure above shows an angle equal to, that is, this angle rests on a circular arc the size of the circumference.

An angle in radians is the central angle in a circle subtended by a circular arc whose length is equal to the radius of the circle. Well, did you figure it out? If not, then let's figure it out from the drawing.

So, the figure shows an angle equal to a radian, that is, this angle rests on a circular arc, the length of which is equal to the radius of the circle (the length is equal to the length or radius equal to length arcs). Thus, the arc length is calculated by the formula:

Where is the central angle in radians.

Well, knowing this, can you answer how many radians are contained in the angle described by the circle? Yes, for this you need to remember the formula for circumference. Here she is:

Well, now let’s correlate these two formulas and find that the angle described by the circle is equal. That is, by correlating the value in degrees and radians, we get that. Respectively, . As you can see, unlike "degrees", the word "radian" is omitted, since the unit of measurement is usually clear from the context.

How many radians are there? That's right!

Got it? Then go ahead and fix it:

Having difficulties? Then look answers:

Right triangle: sine, cosine, tangent, cotangent of angle

So, we figured out the concept of an angle. But what is sine, cosine, tangent, and cotangent of an angle? Let's figure it out. For this it will help us right triangle.

What are the sides of a right triangle called? That's right, hypotenuse and legs: the hypotenuse is the side that lies opposite the right angle (in our example this is the side); legs are the two remaining sides and (those adjacent to right angle), and if we consider the legs relative to the angle, then the leg is adjacent leg, and the leg is opposite. So, now let’s answer the question: what are sine, cosine, tangent and cotangent of an angle?

Sine of angle- this is the ratio of the opposite (distant) leg to the hypotenuse.

In our triangle.

Cosine of angle- this is the ratio of the adjacent (close) leg to the hypotenuse.

In our triangle.

Tangent of the angle- this is the ratio of the opposite (distant) side to the adjacent (close).

In our triangle.

Cotangent of angle- this is the ratio of the adjacent (close) leg to the opposite (far).

In our triangle.

These definitions are necessary remember! To make it easier to remember which leg to divide into what, you need to clearly understand that in tangent And cotangent only the legs sit, and the hypotenuse appears only in sinus And cosine. And then you can come up with a chain of associations. For example, this one:

Cosine→touch→touch→adjacent;

Cotangent→touch→touch→adjacent.

First of all, you need to remember that sine, cosine, tangent and cotangent as the ratios of the sides of a triangle do not depend on the lengths of these sides (at the same angle). Do not believe? Then make sure by looking at the picture:

Consider, for example, the cosine of an angle. By definition, from a triangle: , but we can calculate the cosine of an angle from a triangle: . You see, the lengths of the sides are different, but the value of the cosine of one angle is the same. Thus, the values ​​of sine, cosine, tangent and cotangent depend solely on the magnitude of the angle.

If you understand the definitions, then go ahead and consolidate them!

For the triangle shown in the figure below, we find.

Well, did you get it? Then try it yourself: calculate the same for the angle.

Unit (trigonometric) circle

Understanding the concepts of degrees and radians, we considered a circle with a radius equal to. Such a circle is called single. It will be very useful when studying trigonometry. Therefore, let's look at it in a little more detail.

As you can see, this circle is constructed in Cartesian system coordinates The radius of the circle is equal to one, while the center of the circle lies at the origin of coordinates, the initial position of the radius vector is fixed along the positive direction of the axis (in our example, this is the radius).

Each point on the circle corresponds to two numbers: the axis coordinate and the axis coordinate. What are these coordinate numbers? And in general, what do they have to do with the topic at hand? To do this, we need to remember about the considered right triangle. In the figure above, you can see two whole right triangles. Consider a triangle. It is rectangular because it is perpendicular to the axis.

What is the triangle equal to? That's right. In addition, we know that is the radius of the unit circle, which means . Let's substitute this value into our formula for cosine. Here's what happens:

What is the triangle equal to? Well, of course, ! Substitute the radius value into this formula and get:

So, can you tell what coordinates a point belonging to a circle has? Well, no way? What if you realize that and are just numbers? Which coordinate does it correspond to? Well, of course, the coordinates! And what coordinate does it correspond to? That's right, coordinates! Thus, period.

What then are and equal to? That's right, let's use the corresponding definitions of tangent and cotangent and get that, a.

What if the angle is larger? For example, like in this picture:

What has changed in in this example? Let's figure it out. To do this, let's turn again to a right triangle. Consider a right triangle: angle (as adjacent to an angle). What are the values ​​of sine, cosine, tangent and cotangent for an angle? That's right, we adhere to the appropriate definitions trigonometric functions:

Well, as you can see, the value of the sine of the angle still corresponds to the coordinate; the value of the cosine of the angle - the coordinate; and the values ​​of tangent and cotangent to the corresponding ratios. Thus, these relations apply to any rotation of the radius vector.

It has already been mentioned that the initial position of the radius vector is along the positive direction of the axis. So far we have rotated this vector counterclockwise, but what happens if we rotate it clockwise? Nothing extraordinary, you will also get an angle of a certain value, but only it will be negative. Thus, when rotating the radius vector counterclockwise, we get positive angles, and when rotating clockwise - negative.

So, we know that a whole revolution of the radius vector around a circle is or. Is it possible to rotate the radius vector to or to? Well, of course you can! In the first case, therefore, the radius vector will make one full revolution and stop at position or.

In the second case, that is, the radius vector will make three full revolutions and stop at position or.

Thus, from the above examples we can conclude that angles that differ by or (where is any integer) correspond to the same position of the radius vector.

The figure below shows an angle. The same image corresponds to the corner, etc. This list can be continued indefinitely. All these angles can be written by the general formula or (where is any integer)

Now, knowing the definitions of the basic trigonometric functions and using the unit circle, try to answer what the values ​​are:

Here's a unit circle to help you:

Having difficulties? Then let's figure it out. So we know that:

From here, we determine the coordinates of the points corresponding to certain angle measures. Well, let's start in order: the angle at corresponds to a point with coordinates, therefore:

Does not exist;

Further, adhering to the same logic, we find out that the corners in correspond to points with coordinates, respectively. Knowing this, it is easy to determine the values ​​of trigonometric functions at the corresponding points. Try it yourself first, and then check the answers.

Answers:

Does not exist

Does not exist

Does not exist

Does not exist

Thus, we can make the following table:

There is no need to remember all these values. It is enough to remember the correspondence between the coordinates of points on the unit circle and the values ​​of trigonometric functions:

But the values ​​of the trigonometric functions of angles in and, given in the table below, must be remembered:

Don't be scared, now we'll show you one example quite simple to remember the corresponding values:

To use this method, it is vital to remember the values ​​of the sine for all three measures of angle (), as well as the value of the tangent of the angle. Knowing these values, it is quite simple to restore the entire table - the cosine values ​​are transferred in accordance with the arrows, that is:

Knowing this, you can restore the values ​​for. The numerator " " will match and the denominator " " will match. Cotangent values ​​are transferred in accordance with the arrows indicated in the figure. If you understand this and remember the diagram with the arrows, then it will be enough to remember all the values ​​​​from the table.

Coordinates of a point on a circle

Is it possible to find a point (its coordinates) on a circle, knowing the coordinates of the center of the circle, its radius and angle of rotation?

Well, of course you can! Let's get it out general formula to find the coordinates of a point.

For example, here is a circle in front of us:

We are given that the point is the center of the circle. The radius of the circle is equal. It is necessary to find the coordinates of a point obtained by rotating the point by degrees.

As can be seen from the figure, the coordinate of the point corresponds to the length of the segment. The length of the segment corresponds to the coordinate of the center of the circle, that is, it is equal. The length of a segment can be expressed using the definition of cosine:

Then we have that for the point coordinate.

Using the same logic, we find the y coordinate value for the point. Thus,

So, in general view coordinates of points are determined by the formulas:

Coordinates of the center of the circle,

Circle radius,

The rotation angle of the vector radius.

As you can see, for the unit circle we are considering, these formulas are significantly reduced, since the coordinates of the center are equal to zero and the radius is equal to one:

Well, let's try out these formulas by practicing finding points on a circle?

1. Find the coordinates of a point on the unit circle obtained by rotating the point on.

2. Find the coordinates of a point on the unit circle obtained by rotating the point on.

3. Find the coordinates of a point on the unit circle obtained by rotating the point on.

4. The point is the center of the circle. The radius of the circle is equal. It is necessary to find the coordinates of the point obtained by rotating the initial radius vector by.

5. The point is the center of the circle. The radius of the circle is equal. It is necessary to find the coordinates of the point obtained by rotating the initial radius vector by.

Having trouble finding the coordinates of a point on a circle?

Solve these five examples (or get good at solving them) and you will learn to find them!

1.

You can notice that. But we know what corresponds to a full revolution of the starting point. Thus, the desired point will be in the same position as when turning to. Knowing this, we find the required coordinates of the point:

2. The unit circle is centered at a point, which means we can use simplified formulas:

You can notice that. We know what corresponds to two full revolutions of the starting point. Thus, the desired point will be in the same position as when turning to. Knowing this, we find the required coordinates of the point:

Sine and cosine are table values. We recall their meanings and get:

Thus, the desired point has coordinates.

3. The unit circle is centered at a point, which means we can use simplified formulas:

You can notice that. Let's depict the example in question in the figure:

The radius makes angles equal to and with the axis. Knowing that the table values ​​of cosine and sine are equal, and having determined that the cosine here takes negative meaning, and the sine is positive, we have:

More details similar examples are understood when studying formulas for reducing trigonometric functions in the topic.

Thus, the desired point has coordinates.

4.

Angle of rotation of the radius of the vector (by condition)

To determine the corresponding signs of sine and cosine, we construct a unit circle and angle:

As you can see, the value, that is, is positive, and the value, that is, is negative. Knowing the tabular values ​​of the corresponding trigonometric functions, we obtain that:

Let's substitute the obtained values ​​into our formula and find the coordinates:

Thus, the desired point has coordinates.

5. To solve this problem, we use formulas in general form, where

Coordinates of the center of the circle (in our example,

Circle radius (by condition)

Angle of rotation of the radius of the vector (by condition).

Let's substitute all the values ​​into the formula and get:

and - table values. Let’s remember and substitute them into the formula:

Thus, the desired point has coordinates.

SUMMARY AND BASIC FORMULAS

The sine of an angle is the ratio of the opposite (far) leg to the hypotenuse.

The cosine of an angle is the ratio of the adjacent (close) leg to the hypotenuse.

The tangent of an angle is the ratio of the opposite (far) side to the adjacent (close) side.

The cotangent of an angle is the ratio of the adjacent (close) side to the opposite (far) side.

Formulas for the sum and difference of sines and cosines for two angles α and β allow us to move from the sum of these angles to the product of angles α + β 2 and α - β 2. Let us immediately note that you should not confuse the formulas for the sum and difference of sines and cosines with the formulas for sines and cosines of the sum and difference. Below we list these formulas, give their derivations and show examples of application for specific problems.

Yandex.RTB R-A-339285-1

Formulas for the sum and difference of sines and cosines

Let's write down what the sum and difference formulas look like for sines and cosines

Sum and difference formulas for sines

sin α + sin β = 2 sin α + β 2 cos α - β 2 sin α - sin β = 2 sin α - β 2 cos α + β 2

Sum and difference formulas for cosines

cos α + cos β = 2 cos α + β 2 cos α - β 2 cos α - cos β = - 2 sin α + β 2 cos α - β 2 , cos α - cos β = 2 sin α + β 2 · β - α 2

These formulas are valid for any angles α and β. The angles α + β 2 and α - β 2 are called the half-sum and half-difference of the angles alpha and beta, respectively. Let us give the formulation for each formula.

Definitions of formulas for sums and differences of sines and cosines

Sum of sines of two angles is equal to twice the product of the sine of the half-sum of these angles and the cosine of the half-difference.

Difference of sines of two angles is equal to twice the product of the sine of the half-difference of these angles and the cosine of the half-sum.

Sum of cosines of two angles is equal to twice the product of the cosine of the half-sum and the cosine of the half-difference of these angles.

Difference of cosines of two angles is equal to twice the product of the sine of the half-sum and the cosine of the half-difference of these angles, taken with a negative sign.

Deriving formulas for the sum and difference of sines and cosines

To derive formulas for the sum and difference of the sine and cosine of two angles, addition formulas are used. Let's list them below

sin (α + β) = sin α · cos β + cos α · sin β sin (α - β) = sin α · cos β - cos α · sin β cos (α + β) = cos α · cos β - sin α sin β cos (α - β) = cos α cos β + sin α sin β

Let’s also imagine the angles themselves as a sum of half-sums and half-differences.

α = α + β 2 + α - β 2 = α 2 + β 2 + α 2 - β 2 β = α + β 2 - α - β 2 = α 2 + β 2 - α 2 + β 2

We proceed directly to the derivation of the sum and difference formulas for sin and cos.

Derivation of the formula for the sum of sines

In the sum sin α + sin β, we replace α and β with the expressions for these angles given above. We get

sin α + sin β = sin α + β 2 + α - β 2 + sin α + β 2 - α - β 2

Now we apply the addition formula to the first expression, and to the second - the formula for the sine of angle differences (see formulas above)

sin α + β 2 + α - β 2 = sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 sin α + β 2 - α - β 2 = sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 sin α + β 2 + α - β 2 + sin α + β 2 - α - β 2 = sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 + sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 Open the brackets, add similar terms and get the required formula

sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 + sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 = = 2 sin α + β 2 cos α - β 2

The steps to derive the remaining formulas are similar.

Derivation of the formula for the difference of sines

sin α - sin β = sin α + β 2 + α - β 2 - sin α + β 2 - α - β 2 sin α + β 2 + α - β 2 - sin α + β 2 - α - β 2 = sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 - sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 = = 2 sin α - β 2 cos α + β 2

Derivation of the formula for the sum of cosines

cos α + cos β = cos α + β 2 + α - β 2 + cos α + β 2 - α - β 2 cos α + β 2 + α - β 2 + cos α + β 2 - α - β 2 = cos α + β 2 cos α - β 2 - sin α + β 2 sin α - β 2 + cos α + β 2 cos α - β 2 + sin α + β 2 sin α - β 2 = = 2 cos α + β 2 cos α - β 2

Derivation of the formula for the difference of cosines

cos α - cos β = cos α + β 2 + α - β 2 - cos α + β 2 - α - β 2 cos α + β 2 + α - β 2 - cos α + β 2 - α - β 2 = cos α + β 2 cos α - β 2 - sin α + β 2 sin α - β 2 - cos α + β 2 cos α - β 2 + sin α + β 2 sin α - β 2 = = - 2 sin α + β 2 sin α - β 2

Examples of solving practical problems

First, let's check one of the formulas by substituting specific angle values ​​into it. Let α = π 2, β = π 6. Let us calculate the value of the sum of the sines of these angles. First, we will use the table of basic values ​​of trigonometric functions, and then we will apply the formula for the sum of sines.

Example 1. Checking the formula for the sum of sines of two angles

α = π 2, β = π 6 sin π 2 + sin π 6 = 1 + 1 2 = 3 2 sin π 2 + sin π 6 = 2 sin π 2 + π 6 2 cos π 2 - π 6 2 = 2 sin π 3 cos π 6 = 2 3 2 3 2 = 3 2

Let us now consider the case when the angle values ​​differ from the basic values ​​presented in the table. Let α = 165°, β = 75°. Let's calculate the difference between the sines of these angles.

Example 2. Application of the difference of sines formula

α = 165 °, β = 75 ° sin α - sin β = sin 165 ° - sin 75 ° sin 165 - sin 75 = 2 sin 165 ° - sin 75 ° 2 cos 165 ° + sin 75 ° 2 = = 2 sin 45° cos 120° = 2 2 2 - 1 2 = 2 2

Using the formulas for the sum and difference of sines and cosines, you can move from the sum or difference to the product of trigonometric functions. Often these formulas are called formulas for moving from a sum to a product. The formulas for the sum and difference of sines and cosines are widely used in solving trigonometric equations and in converting trigonometric expressions.

If you notice an error in the text, please highlight it and press Ctrl+Enter