Солнечные батареи своими руками. Солнечная батарея своими руками (пошагово, фото)

Комфортность проживания в домах и квартирах современного человека с годами требует все большего количества электроэнергии. Но в современных условиях себестоимость каждой единицы электроэнергии неуклонно повышается, что, соответственно, сказывается и на затратах. Поэтому вопрос о переходе на альтернативные источники электроэнергии является наиболее актуальным. Одним из способов обеспечить независимость в получении электроэнергии является возможность применять для этих целей солнечные батареи для дома.

Эффективная альтернатива или всеобщее заблуждение?

Разговоры об автономном питании бытовых приборов и освещении в домах с использованием солнечной энергии ведутся еще с середины прошлого века. Развитие технологий и всеобщий прогресс позволили приблизить эту технологию к обыкновенному потребителю. Утверждение о том, что использовать солнечные батареи для дома станет довольно эффективным способом замены традиционных энергосетей, можно было бы считать бесспорным, если бы не пара существенных «но».

Основным требованием эффективности использования гелиевых батарей является количество солнечной энергии. Устройство солнечной батареи позволяет эффективно пользоваться энергией нашего светила только в регионах, где большую часть года солнечно. Необходимо также принимать во внимание и широту, на которой монтируются солнечные батареи, - чем выше широта, тем меньшей силой обладает луч солнца. В идеале можно добиться эффективности около 40%. Но это в идеале, а на практике все несколько иначе.

Следующий момент, на который стоит обратить внимание, - необходимость использования достаточно больших площадей, позволяющих смонтировать автономные солнечные батареи. Если батареи планируется размещать на дачном участке, загородном доме, коттедже, то здесь проблем не будет, а вот живущим в многоквартирных домах думать об этом придется серьезно.

Солнечная батарея - что это такое?

Устройство солнечной батареи основано на способности фотоэлементов преобразовывать солнечную энергию в электричество. Соединенные в общую систему, эти преобразователи создают многоячеистое поле, каждая ячейка которого под воздействием солнечной энергии становится источником электрического тока, который затем аккумулируется в специальных устройствах - аккумуляторах. Разумеется, что мощность такого устройства тем выше, чем больше данное поле. То есть чем больше в нем фотоэлементов, тем большее количество электроэнергии оно способно произвести.

Но это не значит, что только огромные площади, на которых возможна установка солнечных батарей, могут обеспечить необходимой электроэнергией. Существует множество гаджетов, которые имеют возможность работать не только от привычных всем автономных источников питания - батареек, аккумуляторов - но и использовать энергию солнца. В конструкции таких приборов вмонтированы портативные солнечные батареи, дающие возможность как подзаряжать устройство, так и работать автономно. Например, обычный карманный калькулятор: в солнечную погоду, положив его на стол, можно обеспечить подзарядку батареи, что продлевает срок ее службы на долгие годы. Существует масса различных устройств, где такие батареи используются: это и ручки-фонарики, и фонарики-брелоки и т. д.

На дачных и загородных участках в последнее время стало модным использовать для освещения фонарики на солнечных батареях. Экономичное и несложное устройство обеспечивает освещение вдоль садовых дорожек, на террасах и во всех необходимых местах, используя электроэнергию, накопленную в светлое время суток, когда светит солнце. Экономные лампы освещения способны расходовать эту энергию достаточно долгое время, что и обеспечивает большой интерес к таким устройствам. Освещение на солнечных батареях используется и в домах, коттеджах, а также подсобных помещениях.

Типы автономных солнечных батарей

Существует два типа преобразователей солнечной энергии, обусловленных устройством самой батареи, - пленочные и кремневые. К первому виду относятся тонкопленочные батареи, в которых преобразователи представляют собой пленку, изготовленную по особой технологии. Еще их называют полимерными. Такие батареи устанавливаются в любом доступном месте, но обладают несколькими недостатками: им нужно много места, низкий коэффициент полезного действия и при даже средней облачности их энергоэффективность падает на 20 процентов.

Кремневый тип солнечных батарей представлен монокристаллическими и поликристаллическими устройствами, а также аморфными кремниевыми панелями. Монокристаллические батареи состоят из множества ячеек, в которых встроены кремневые преобразователи, соединенные в общую схему и заполненные силиконом. Просты в эксплуатации, с высоким (до 22%) КПД, водонепроницаемые, легкие и гибкие, но для эффективной работы требуют прямого солнечного потока. Облачная погода может стать причиной полного прекращения выработки электроэнергии.

Поликристаллические батареи от монокристаллических отличаются количеством преобразователей, размещенных в каждой ячейке и установленных разнонаправленно, что обеспечивает их эффективную работу даже при рассеянном свете. Это наиболее распространенный вид батарей, которые применяются и в городских условиях, хотя их КПД несколько ниже, чем у монокристаллических.

Аморфные кремниевые источники питания, несмотря на свою низкую энергоэффективность - около 6%, тем не менее считаются более перспективными. Они поглощают солнечный поток в двадцать раз больше, чем кремниевые, и намного эффективнее в пасмурные дни.

Все это промышленные устройства, которые имеют свою - и в настоящее время не очень демократичную - цену. А возможно ли собирать солнечные батареи своими руками?

Общий принцип выбора и компоновки деталей для солнечных батарей

В связи с последними требованиями к производству электрической энергии, которые направлены на переход с традиционного сырья, используемого при его производстве, тема солнечных источников питания принимает все более практическое значение. Массовое производство элементов для создания собственной электрической сети уже предлагает потребителю различные варианты обеспечения автономной электроэнергией. Но пока еще стоимость автономного солнечного источника питания достаточна высока и недоступна для массового потребителя.

Но это не значит, что нельзя смастерить солнечные батареи своими руками. При этом просто необходимо определиться со способом сборки такого устройства. Или, приобретая отдельные элементы, компоновать их самостоятельно, или делать все составные части собственноручно.

Из чего, собственно, состоит система питания, основанная на преобразовании солнечной энергии в электрический ток? Основным, но не последним из ее элементов, является солнечная батарея, конструкция которой была рассмотрена выше. Вторым элементом в схеме является контроллер солнечной батареи, задача которого состоит в контроле зарядки аккумуляторных батарей электрическим током, полученным в солнечных батареях. Следующей частью домашней солнечной электростанции является батарея электрических аккумуляторов, в которой и накапливается электричество. И последним элементом «солнечной» электрической цепи будет инвертор, позволяющий полученное электричество небольшого вольтажа использовать для бытовых приборов, рассчитанных на 220 В.

Рассматривая каждый элемент домашней гелиоэлектростанции отдельно, можно увидеть, что каждый ее элемент может быть приобретен в розничной сети, на электронных аукционах и т. д. или собран собственноручно. И даже контроллер солнечной батареи своими руками можно изготовить - при наличии определенных навыков и теоретических знаний.

Теперь что касается задач, которые ставятся перед собственной электростанцией. Они просты и сложны одновременно. Простота их в том, что солнечная энергия используется для определенных целей: освещения, отопления или полного обеспечения потребностей жилища. Сложность - в правильном расчете требуемой мощности и соответствующем подборе комплектующих частей.

Начинаем собирать солнечную панель

Сейчас можно найти массу предложений о том, как и из чего можно собрать солнечные панели. Способов много, и выбрать можно по своему предпочтению. В данном материале рассматриваются базовые принципы, которые необходимо использовать, изготавливая солнечные батареи своими руками.

Прежде всего, нужно определиться с мощностью, которую необходимо получить, и решить, на каком напряжении будет работать сеть. Существует два варианта сетей на солнечной энергии - с постоянным током и переменным. Переменный ток более предпочтителен из-за возможности разнесения потребителей электроэнергии на значительное расстояние - более 15 метров. Это как раз для небольшого дома. Не вдаваясь глубоко в расчеты и отталкиваясь от опыта тех, кто уже пользуется солнечной энергией на своих дачах, можно с уверенностью говорить о том, что на широтах Москвы - а опускаясь южнее, эти показатели будут, естественно, выше - один квадратный метр солнечных панелей может производить до 120 ватт в час. Это если при сборке использовать поликристаллические элементы. Они более привлекательны по цене. А суммарную мощность вполне реально определить, сложив всю потребляемую мощность каждого отдельного электроприбора. Очень приблизительно можно сказать, что для семьи из 3-4 человек, требуется около 300 киловатт в месяц, которые могут быть получены от солнечных панелей в 20 кв. метров.

Также можно встретить описание сетей на солнечной энергии, использующих панели из 36 элементов. Каждая из панелей имеет мощность около 65 Ватт. Солнечная батарея для дачи или небольшого частного дома может состоять из 15 таких панелей, которые способны вырабатывать до 5 кВт в час общей электрической мощности, имея собственную мощность в 1 кВт.

Солнечные панели своими руками

А теперь о том, как сделать солнечную батарею. Первым, что придется приобрести, будет набор преобразующих пластин, количество которых зависит от мощности самодельной гелиоэлектростанции. Для одной батареи нужно будет 36 штук. Можно воспользоваться набором Solar Cells, а также приобрести поврежденные элементы или с дефектами - это скажется лишь на внешнем виде батареи. Если они рабочие, то на выходе получится почти 19 Вольт. Спаивать их нужно с учетом на расширение - оставляя зазор до пяти миллиметров между ними. Устройство солнечной батареи своими руками требует предельной внимательности при исполнении пайки фотопластинок. Если пластинки приобретались без проводников, то их необходимо напаивать вручную. Процесс сложный и ответственный. Если работа выполняется паяльником на 60 Вт, лучше всего последовательно с ним подключить простую стоваттную лампочку.

Схема солнечной батареи очень проста - каждая пластина спаивается с другими последовательно. Стоит отметить, что пластины очень хрупкие, и их спайку желательно проводить с использованием какого-нибудь каркаса. При распайке фотопластинок также необходимо помнить о том, что в цепь нужно вставить предохранительные диоды, предотвращающие разряд фотоэлементов при затемнении или снижении освещенности. Для этого шины половинок панели выводятся на клеммник, создавая среднюю точку. Эти диоды предотвращают также разряд аккумуляторов ночью.

Качество пайки - основное требование к безупречной работе солнечных батарей. Перед установкой подложки необходимо все места пайки протестировать. Выводить ток рекомендуется с использованием проводов малого сечения. Например, акустическим кабелем с силиконовой изоляцией. Все проводники необходимо закрепить герметиком.

Затем стоит определиться с поверхностью, на которую эти пластины будут крепиться. Вернее, с материалом для ее изготовления. Самым подходящим по характеристикам и легкодоступным является стекло, которое имеет максимальную пропускную способность светового потока по сравнению с оргстеклом или карбонатом.

Следующим шагом станет изготовление короба. Для этого используется алюминиевый уголок или деревянный брус. В каркас на герметик сажается стекло - желательно тщательное заполнение всех неровностей. Следует заметить, что герметик должен высохнуть полностью - во избежание загрязнения фотопластинок. Затем на стекло крепится готовый лист из спаянных фотоэлементов. Способ крепления может быть различный, но солнечные батареи для дома, отзывы о которых распространены, закреплялись в основном с помощью прозрачной эпоксидной смолы или герметика. Если эпоксидку наносят равномерно на всю поверхность стекла, после чего на нее помещают преобразователи, то герметиком крепят в основном на каплю посредине каждого элемента.

Для подложки используется различный материал, который также крепится на герметик. Это могут быть и древесно-стружечные плиты небольшой толщины или лист ДВП. Хотя можно, опять же, залить и эпоксидной смолой. Корпус батареи должен быть герметичным. Сделанная таким способом солнечная батарея своими руками, схема сборки которой оговаривалась выше, даст 18-19 Вольт, обеспечив зарядку 12-вольтового аккумулятора.

Можно ли сделать преобразователь солнечной энергии своими руками?

Мастеровые люди, обладающие обширными познаниями в электронике, могут сделать фотоэлементы для преобразования солнечной энергии в электрическую и самостоятельно. Для этого используются кремневые диоды, вернее их кристаллы, освобожденные из корпусов. Процесс этот трудоемкий, и начинать его или нет, каждый решает самостоятельно. Можно брать диоды, использующиеся в мостовых схемах выпрямителей напряжения и стабилизаторах - Д226, КД202, Д7 и др. Находящийся в этих диодах полупроводниковый кристалл при попадании на него солнечного света становится точно так же как и фотопластинка. Но добраться до него и при этом его не повредить - довольно сложный и кропотливый процесс.

Всем, кто решится заняться созданием элементов для преобразователя самостоятельно, стоит запомнить следующее - если удалось аккуратно разобрать и спаять батарею, состоящую всего из двадцати диодов марки КД202 по схеме из параллельно соединенных 5 групп, то можно получить напряжение около 2 В с током до 0,8 Ампера. Этой мощности хватит лишь на питание небольшого радиоприемника, имеющего в своей схеме всего один или два транзистора. Но чтобы из них получилась полноценная солнечная батарея для дачи, нужно очень сильно постараться. Огромный труд, большие площади, громоздкость конструкции делает это занятие бесперспективным. Но для маленьких приборов и гаджетов это вполне подходящая конструкция, которую могут сделать все, кто любит заниматься электротехникой.

Можно ли использовать светодиоды для солнечных панелей?

Светодиодная солнечная батарея является чистым вымыслом. Из светодиодов собрать даже небольшую солнечную микропанель практически невозможно. Вернее, создать можно, но стоит ли? С помощью солнечного света вполне реально получить на светодиоде около 1,5 вольта напряжения, но при этом сила сгенерированного тока очень мала, а для его генерации требуется только очень сильное солнце. И еще - светодиод при подаче на него напряжения сам выделяет лучевую энергию, то есть светится. А значит, те его собратья, на которые попал солнечный свет большей силы, будут вырабатывать электричество, которое этот светодиод сам же и будет потреблять. Все правильно и просто. И разобраться при этом в том, какие светодиоды производят, а какие потребляют энергию, просто невозможно. Даже если использовать десятки тысяч светодиодов - а это непрактично и неэкономично - толку никакого не будет.

Отапливаем дом солнечной энергией

Если про реальную возможность обеспечить бытовые электроприборы «солнечным» током уже говорилось выше, то для обогрева жилья солнечной энергией существуют два варианта. И чтобы использовать солнечные батареи для отопления дома, нужно знать некоторые требования, обязательные для выполнения этой задачи.

В первом варианте использование солнечной энергии для отопления происходит с помощью иной системы, нежели обычная электрическая сеть. Устройство для отопления дома, использующее солнечную энергию, называется гелиосистема и состоит из нескольких приборов. Основным рабочим устройством является вакуумный коллектор, который превращает солнечный свет в тепло. Он состоит из множества стеклянных трубок небольшого диаметра, в которые помещена жидкость с очень низким порогом нагрева. Нагреваясь, эта жидкость в дальнейшем передает свое тепло воде в баке-накопителе объемом не менее 300 литров воды. Затем эта нагретая вода подается на отопительные панели, выполненные из тонких медных труб, которые, в свою очередь, отдают полученное тепло, прогревая воздух в помещении. Вместо панелей можно, конечно, использовать и традиционные радиаторы, но эффективность их намного ниже.

Конечно, для отопления можно использовать и солнечные панели, но в этом случае нужно будет согласиться с тем, что на нагревание воды в бойлере с помощью ТЭНов потребуется львиная доля генерируемой батареями энергии. Простые расчеты показывают, что для нагревания бойлером 100 литров воды до 70-80 ⁰С требуется порядка 4 часов. За это время водяной котел с нагревателями на 2 кВт мощности потребит около 8 кВт. Если солнечные батареи в суммарной мощности смогут вырабатывать до 5 кВт в час, то проблем с энергообеспечением в доме не будет. Но если солнечные панели имеют площадь меньше 10 кв. метров, то такие мощности для полноценного обеспечения электрической энергией не подойдут.

Использование вакуумного коллектора для отопления дома оправдано в том случае, когда это полноценный жилой дом. Схема работы такой гелиосистемы обеспечивает теплом все жилище в течение круглого года.

И все-таки это работает!

В конце концов, солнечные батареи, своими руками собранные энтузиастами, являются вполне реальными источниками питания. И если использовать в цепи 12-вольтные аккумуляторы с током не менее 800 А/час, оборудование по превращению напряжения из низкого в высокое - инверторы, а также контроллеры напряжения на 24 В с рабочим током до 50 Ампер и простой «бесперебойник» с током до 150 Ампер, то получится очень приличная электростанция, работающая на солнечных лучах, которая способна обеспечить потребности в электроэнергии жильцов частного дома. Естественно, при определенных погодных условиях.

являются фотоэлектрические преобразователи (солнечные модули), которые обращают энергию солнечного света в электричество. Для того, чтобы в доме пользоваться бытовыми приборами за счет солнечной батареи, таких модулей должно быть достаточно много.

Энергии, вырабатываемой одним модулем, недостаточно для удовлетворения энергетических потребностей. Между собой фотоэлектрические преобразователи связаны одной последовательной цепью.

Части, из которых состоит солнечная батарея:

  1. Солнечные модули ,объединенные в рамки.В одной рамке объединяются от единиц до нескольких десятков фотоэлектрических элементов. Для обеспечения электроэнергией целого дома понадобится несколько панелей с элементами.
  2. . Служит для накопления получаемой энергии, которую затем можно использовать в темное время суток.
  3. Контроллер . Он следит за разрядкой и зарядкой аккумулятора.
  4. . Преобразует постоянный ток, полученный от солнечных модулей в переменный.

Солнечный модуль (или фотоэлектрический элемент) основан на принципе p-n перехода, и по своему устройству очень напоминает транзистор. Если у транзистора спилить шляпку и на поверхность направить солнечные лучи, то подключенным к нему прибором можно определить мизерный электрический ток. Солнечный модуль работает по такому же принципу, только поверхность перехода у солнечного элемента значительно больше.

Как и многие типы транзисторов, солнечные элементы изготавливаются из кристаллического кремния.

По технологии изготовления и материалам различают три вида модулей:

  1. Монокристаллические . Изготовлены в виде цилиндрических кремниевых слитков. Преимущества элементов заключается в высокой производительности, компактности и в наибольшем сроке службы.
  2. Тонкопленочные . Делается напыление слоев фотоэлектрического преобразователя на тонкую подложку. КПД тонкопленочных модулей относительно невысок (7-13%).
  3. Поликристаллические . Расплавленный кремний заливается в квадратную форму, затем остуженный материал режется на квадратные пластинки. Внешне отличаются от монокристаллических модулей тем, что края углов у поликристаллических пластин не обрезаны.

Аккумулятор. В солнечных батареях наибольшее применение нашли свинцово-кислотные аккумуляторы. Стандартный аккумулятор имеет напряжение 12 вольт, для получения большего напряжения собирают аккумуляторные блоки. Так можно собрать блок напряжением 24 и 48 вольт.

Контроллер заряда солнечных батарей. Контроллер заряда действует по принципу регулятора напряжения в автомобиле. В основном на 12 вольт выдают напряжение от 15 до 20 вольт, и без контроллера могут быть повреждены перегрузкой. При 100% заряженном аккумуляторе контроллер отключает модули и предохраняет аккумулятор от закипания.

Инвертор. Солнечные модули вырабатывают постоянный ток, а для использования бытовых приборов и техники требуется переменный ток и напряжение 220 вольт. Инверторы предназначены для преобразования постоянного тока, делая его переменным.

Выбор комплектующих для изготовления

Чтобы снизить себестоимость солнечной станции, нужно попробовать собрать ее самостоятельно. Для этого потребуется закупить необходимые комплектующие, какие-то элементы можно изготовить самому.

Самостоятельно получится собрать:

  • рамки с фотоэлектрическими преобразователями;
  • контроллер зарядки;
  • инвертор напряжения;

Самые большие затраты будут связаны с приобретением самих солнечных элементов. Детали можно заказать из Китая или на eBay, такой вариант обойдется дешевле.

Благоразумно приобретать работоспособные преобразователи с повреждениями и дефектами – они просто забракованы производителем, но вполне исправны. Нельзя покупать элементы разных размеров и мощности – максимальный ток солнечной батареи будет ограничен током самого малого элемента.

Для изготовления рамки с солнечными элементами потребуется:

  • алюминиевый профиль;
  • солнечные элементы (обычно 36 штук для одной рамки);
  • припой и флюс;
  • дрель;
  • крепежные делали;
  • силиконовый герметик;
  • медная шина;
  • лист прозрачного материала (оргстекло, поликарбонат, плексиглас);
  • лист фанеры или текстолита(оргстекла);
  • диоды Шоттки;

Собирать инвертор самостоятельно имеет смысл только при небольшом энергопотреблении. Контроллер заряда в простом исполнении не так дорого стоит, поэтому нет особого смысла тратить время на изготовление прибора.

Технология изготовления своими руками

Для сборки солнечной батарей потребуется:

  1. Сконструировать рамку (корпус).
  2. Спаять все солнечные элементы в параллельную цепь.
  3. Закрепить солнечные элементы на рамке.
  4. Сделать корпус герметичным – прямое попадание атмосферных осадков на фотоэлектрические элементы недопустимо.
  5. Разместить батарею в районе наибольшей солнечной освещенности.

Для удовлетворения энергетических потребностей частного дома одной солнечной панели (рамки) будет недостаточно. Исходя из практики, с одного квадратного метра солнечной панели можно получить 120 Вт мощности. Для нормального энергообеспечения жилого дома потребуется где-то 20 кв. м. площади солнечных элементов.

Чаще всего батареи размещают на крыше дома с солнечной стороны.

Сборка корпуса


Корпус можно собирать из фанерного листа и реек, или из алюминиевых уголков и листа и оргстекла (текстолита). Необходимо определиться, сколько элементов будет размещаться в рамке. Следует учитывать, что между элементами необходим зазор в 3-5 мм, и размер рамки рассчитывается с учетом этих расстояний. Расстояние необходимо для того, чтобы при тепловом расширении пластины не прикасались друг с другом.

Сборка конструкции из алюминиевого профиля и оргстекла:

  • из алюминиевого уголка делается прямоугольный каркас;
  • По углам в алюминиевом корпусе сверлятся отверстия для крепежа;
  • на внутреннюю часть профиля корпуса наносится силиконовый герметик по всему периметру;
  • в раму устанавливается лист оргстекла (текстолита) и плотно прижимается к раме;
  • по углам корпуса с помощью шурупов ставятся крепежные уголки, которые надежно фиксируют лист прозрачного материала в корпусе;
  • герметику дают основательно высохнуть;

Все, корпус готов. Перед размещением солнечных элементов в корпусе необходимо тщательно протереть поверхность от грязи и пыли.

Соединение фотоэлементов


Обращаясь с фотоэлектронными элементами, следует помнить, что они очень хрупкие и требуют бережного отношения. Перед соединением пластин в последовательную цепочку их сначала тщательно, но аккуратно протирают– пластины должны быть идеально чистыми.

Если фотоэлементы были куплены уже с припаянными проводниками, это упрощает процесс соединения модулей. Но перед сборкой в этом случае необходимо проверить качество готовой пайки, и если есть неровности – устранить их.

На фотоэлектрических пластинах предусмотрены контакты по обеим сторонам – это контакты разной полярности. Если проводники(шины) еще не припаяны, необходимо сначала припаять их к контактам пластин, а затем уже соединить фотоэлектрические элементы между собой.

Чтобы припаять шины к фотоэлектрическим модулям, нужно:

  1. Отмерить нужную длину шины и нарезать на куски нужное количество полосок.
  2. Протереть контакты пластин спиртом.
  3. Тонким слоем нанести на контакт флюс по всей длине контакта с одной стороны.
  4. Приложить шину точно по длине контакта и разогретым паяльником медленно провести по всей поверхности пайки.
  5. Перевернуть пластину и повторить все операции пайки на другой стороне.

Нельзя сильно прижимать паяльник к пластине, элемент может лопнуть. Также необходимо проверить качество пайки – неровностей на лицевой стороне фотоэлементов быть не должно. Если бугорки и шероховатости остались, нужно еще раз аккуратно пройтись паяльником по шву контакта. Пользоваться необходимо маломощным паяльником.

Что нужно сделать, чтобы правильно и точно произвести соединение фотоэлектрических элементов:

  1. Если нет опыта в сборке элементов, рекомендуется воспользоваться разметочной поверхностью, на которой следует разместить элементы (фанерный лист).
  2. Расположить солнечные панели строго по разметке. Размечая, не забывать оставлять расстояние между элементами 5 мм.
  3. Пропаивая контакты пластин, обязательно следить за полярностью. Фотоэлементы должны быть правильно собраны в последовательную цепочку, иначе батарея не будет нормально работать.

Механический монтаж панелей:

  1. В корпусе сделать разметку для пластин.
  2. Солнечные элементы поместить в корпус, положив их на оргстекло. В рамке закрепить силиконовым клеем по размеченным местам. Клея много не наносить, только крохотную каплю по центру пластины. Нажимать осторожно, чтобы не повредить пластины.В корпус лучше перемещать пластины вдвоем, одному будет неудобно.
  3. Соединить все провода по краям пластин с общими шинами.

Прежде чем герметизировать панель, нужно протестировать качество пайки. Конструкцию аккуратно выносят поближе к солнечному свету и замеряют напряжение на общих шинах. Оно должно быть в пределах ожидаемых значений.

Как вариант, герметизацию можно провести следующим образом:

  1. Нанести капельки силиконового герметика между пластинами и по краям корпуса, аккуратно пальцами руки края фотоэлементов прижать к оргстеклу. Нужно, чтобы элементы как можно плотнее легли к прозрачному основанию.
  2. Поставить на все края элементов небольшой груз , допустим, головки из автомобильного набора инструментов.
  3. Дать герметику хорошо высохнуть , пластины за это время надежно зафиксируются.
  4. Затем промазать аккуратно все стыки между пластинами и краями рамки. То есть, нужно промазать в корпусе все, кроме самих пластин. Попадание герметика на края тыльной стороны пластин допустимо.

Финальная сборка солнечной батареи


  1. Сбоку корпуса установить соединительный разъем, разъем соединить с Шоттки.
  2. Закрыть с наружной стороны пластины защитным экраном из прозрачного материала. В данном случае, оргстеклом. Конструкция должна быть герметичной и исключать проникновение в нее влаги.
  3. Лицевую сторону (оргстекло) желательно обработать , например, лаком (лак PLASTIK-71).

Для чего нужен диод Шоттки? Если свет падает только на часть солнечной батареи, а другая часть затемнена, возможен выход элементов из строя.

Диоды помогают избежать поломки конструкции в таких случаях. При этом теряется мощность на 25%, но без диодов не обойтись – они шунтируют ток, ток идет в обход фотоэлементов. Чтобы падение напряжения было минимальным, необходимо применять низкоомные полупроводники, такими являются диоды Шоттки.

Преимущества и недостатки солнечной батареи


У солнечных батарей есть как преимущества, так и недостатки. Если бы были только одни плюсы от применения фотоэлектрических преобразователей, весь мир давно бы уже перешел на этот вид получения электроэнергии.

Преимущества:

  1. Автономность источника питания , нет зависимости от перебоев напряжения в централизованной электросети.
  2. Отсутствие абонентской платы за использование электроэнергией.

Недостатки:

  1. Высокая себестоимость оборудования и элементов.
  2. Зависимость от солнечного освещения.
  3. Возможность повреждения элементов солнечной батареи вследствие неблагоприятных погодных условий (град, буря, ураган).

В каких случаях целесообразно использовать установку на фотоэлектрических элементах:

  1. Если объект (дом или дача) находится на большом удалении от линии электропередач. Это может быть загородный коттедж в сельской глубинке.
  2. Когда объект расположен в южном солнечном районе.
  3. При совмещении различных видов энергии. Например, отопление частного дома с помощью печного отопления и солнечной энергии. Себестоимость маломощной солнечной станции будет не столь высока, и может быть экономически оправдана в данном случае.

Установка


Монтировать батарею необходимо по месту максимальной освещенности солнечным светом. Панели могут крепиться на крыше дома, на жестком или поворотном кронштейне.

Лицевая часть солнечной батареи должна быть обращена на юг или юго-запад под углом от 40 до 60 градусов. При монтаже нужно учитывать внешние факторы. Панели не должны загораживаться деревьями и другими предметами, на них не должна попадать грязь.

  1. Лучше покупать фотоэлементы с небольшими дефектами. Они также работоспособны, только имеют не такой красивый внешний вид. Новые элементы очень дороги, сборка солнечной батареи будет экономически не оправдана. Если нет особой спешки, пластины лучше заказать на eBay, это обойдется еще дешевле. С пересылкой и Китая нужно быть осторожнее – большая вероятность получить бракованные детали.
  2. Фотоэлементы нужно купить с небольшим запасом , велика вероятность их поломки во время монтажа, особенно, если нет опыта сборки подобных конструкций.
  3. Если элементы пока не используются , следует припрятать их в надежное место во избежание поломок хрупких деталей. Нельзя складывать пластины большими стопками – они могут лопнуть.
  4. При первой сборке следует изготовить шаблон , на котором будут размечены места расположения пластин перед сборкой. Так легче вымерять расстояния между элементами перед пайкой.
  5. Паять необходимо маломощным паяльником , и ни в коем случае не применять усилие при пайке.
  6. Для сборки корпуса удобнее применять алюминиевые уголки , деревянная конструкция менее надежная. В качестве листа с тыльной стороны элементов лучше использовать оргстекло или другой подобный материал и надежнее, чем крашеная фанера, и эстетично выглядит.
  7. Располагать фотоэлектрические панели следует в местах, где солнечное освещение будет максимальным в течение всего светового дня.

Схема электроснабжения дома


Последовательная цепь энергоснабжения частного дома на солнечных батареях выглядит следующим образом:

  1. Солнечная батарея из нескольких панелей , которые расположены на скате крыши дома, либо на кронштейне. В зависимости от энергопотребления, панелей может быть до 20 штук и больше. Батарея вырабатывает постоянный ток 12 вольт.
  2. Контроллер зарядки . Устройство предохраняет аккумуляторы от преждевременного разряда, а также ограничивает напряжение в цепи постоянного тока. Тем самым, контроллер защищает аккумуляторы от перегрузки.
  3. Инвертор напряжения . Преобразует постоянный ток в переменный ток, обеспечивая тем самым возможность потребления электроэнергии бытовыми приборами.
  4. Аккумуляторы . Для частных домов и дач ставят несколько аккумуляторов, соединяя их последовательно. Служат для накопления энергии. Энергия аккумуляторов используется в темное время суток, когда элементы солнечной батареи не вырабатывают ток.
  5. Электросчетчик .

Довольно часто в частных домах система энергоснабжения дополняется резервным генератором.

В целом, собрать солнечную батарею своими руками не так уж и сложно. Необходимы только определенные средства, терпение и аккуратность.

В настоящее время очень модными и популярными являются альтернативные источники энергии, особенно у владельцев загородных коттеджей или частных домов. Но часто такое устройство стоит немалых денег и не каждый может себе позволить приобрести для дома солнечные батареи. Поэтому очень актуальным стало изготовление солнечных панелей своими руками. Так как же самому сделать солнечные батареи?

Характеристика солнечной панели

Солнечная батарея представляет собой полупроводниковую конструкцию, которая способна преобразовывать солнечное излучение в электроэнергию. Это позволяет обеспечить дом экономичным, надежным и, самое главное, бесперебойным электроснабжением. Особенно это актуально для труднодоступных районов проживания , а также там, где часто возникают перебои с электроэнергией от основного источника.

Такой альтернативный источник энергии довольно практичный, потому что в отличие от традиционного источника энергоснабжения стоит он гораздо меньше. Изготовление солнечных панелей своими руками позволяет не только оптимизировать энергопотребление, но также экономит финансы.

Преимущества

Солнечные батареи обладают следующими достоинствами:

  • простая установка за счет того, что нет необходимости прокладывать к опорам кабель;
  • выработка электроэнергии абсолютно не вредит окружающей среде;
  • отсутствуют подвижные части;
  • электричество поставляется независимо от распределительной сети;
  • минимальные затраты по времени на обслуживание системы;
  • небольшой вес батарей;
  • бесшумная работа;
  • продолжительный срок службы при минимальных расходах.

Недостатки

Несмотря на довольно весомые достоинства, есть у солнечных батарей и свои минусы, такие как:

  • трудоемкость процесса изготовления;
  • чувствительность к загрязнениям;
  • на эффективную работу солнечных панелей оказывают влияние погодные условия (солнечные или пасмурные дни);
  • для такой конструкция необходимо много места;
  • по ночам батареи не работают.

Требования, предъявляемые к солнечной батарее

Установить солнечные панели в частном доме под силу каждому. Но для того чтобы такая конструкция, созданная своими руками, приносила пользу по максимуму, следует учитывать ее особенности. К солнечной батарее предъявляются следующие требования:

Материалы, необходимые для изготовления солнечной батареи своими руками

Если нет возможности приобрести солнечные батареи, можно изготовить их своими руками. Вначале необходимо определиться с материалом , из которого они будут сделаны.

Чтобы создать панели, необходимы будут качественные фотоэлементы. Производители на сегодняшний день предлагают следующие виды устройств:

  • элементы из монокристаллического кремния имеют КПД до 13%, но в пасмурную погоду недостаточно эффективны;
  • фотоэлементы из поликристаллического кремния имеют КПД до 9%, работать могут как в солнечные, так и пасмурные дни.

Для энергоснабжения дома лучше всего использовать поликристаллы, которые доступны в наборах.

Важно знать, что все необходимые для сборки ячейки лучше всего приобретать у одного производителя , так как продукция разных марок имеет значительные различия в эффективности изделий. Это может создать дополнительные сложности при сборке, повлечь затраты в результате эксплуатации, при этом солнечная батарея будет иметь невысокую мощность.

Чтобы сделать солнечную панель из подручных средств, необходимы будут специальные проводники, предназначенные для соединения фотоэлементов.

Корпус будущей конструкции лучше всего изготавливать из алюминиевых уголков, обладающих небольшим весом. Можно также использовать такой материал, как дерево. Но из-за того, что конструкция будет все время подвержена атмосферному влиянию, срок ее эксплуатации будет снижаться.

Размеры корпуса панели зависят от количества фотоячеек.

Внешнее покрытие фотоэлементов может быть выполнено из оргстекла или прозрачного поликарбоната. Также применяют закаленное стекло, не пропускающее инфракрасные лучи.

Таким образом, для изготовления солнечной батареи своими руками потребуются следующие материалы:

  • фотоэлементы в наборе;
  • крепежные метизы;
  • медные электропровода высокой мощности;
  • силиконовые вакуумные подставки;
  • паяльное оборудование;
  • алюминиевые уголки;
  • диоды Шотке;
  • прозрачный лист из поликарбоната или плексигласа;
  • набор винтов для крепежа.

Такие материалы приобретаются в магазине стройматериалов или в интернет-магазине.

Можно ли сделать солнечные батареи своими руками? Этот вопрос интересует многих людей, решивших использовать альтернативные энергоисточники. Да, вполне можно. Причем процесс этот, по сути, далеко не такой технологически сложный, как может показаться на первый взгляд. Главная сложность будет заключаться в пайке проводников к фотоячейкам, но и эту проблему можно решить с минимальными затратами.

Однако прежде, чем собирать солнечную батарею в домашних условиях, нужно приобрести все необходимые элементы. То есть собственно фотоячейки и материалы для изготовления корпуса (сам корпус и лицевое защитное стекло). Также понадобятся паяльник и припой.

Выбор фотоячеек

Фотоячейки можно использовать и поли-, и монокристаллические, все зависит от того, какие рабочие параметры должна будет «выдавать» батарея. Разумеется, их нужно рассчитать заранее. Приобрести фотоячейки можно на крупных интернет-порталах (Ebay, Amazon и т.д.) или же в специализированных магазинах. Причем в последнее время там все чаще продаются уже готовые наборы для солнечных панелей, включающие в себя подобранные по параметрам фотоячейки с уже припаянными к ним проводниками. Более того, для защиты от механических повреждений такие ячейки покрыты защитным ламинирующим составом.

Лучше всего воспользоваться именно таким набором, поскольку пайка проводников к ячейкам – процесс очень трудоемкий и без должного опыта вряд ли выполнимый. А кроме того, купленные «по отдельности» ячейки в ходе транспортировки нередко оказываются поврежденными.

Еще один немаловажный аспект – классификация фотоячеек. По своему качеству все ячейки для солнечных батарей делятся на 5 классов:

  • A. Отборные элементы без малейших дефектов, способных снизить их производительность.
  • B. Фотоэлементы «второго сорта» с незначительными царапинами или иными дефектами малых размеров.
  • C. Элементы «третьего сорта» с ярко выраженными дефектами, сколами и трещинами.
  • D. Брак ячеек. Треснутые, разломанные изделия, пригодные только для переработки.

Разумеется, выбирать нужно фотоячейки с маркировкой «Grade A». Именно они будут обладать максимальным КПД и позволят собрать для дома или для дачи наиболее эффективную солнечную батарею.

Схема же соединения ячеек представляет собой последовательное соединение. Число ячеек в цепи будет зависеть, опять же, от требуемого выходного напряжения. Чем больше ячеек, тем выше будет напряжение на выходе. Как правило, для дачи или для дома достаточно изготовить солнечную батарею из 36 ячеек. Их выходное напряжение составляет 12-18 В (в зависимости от исходных параметров ячеек), что как раз позволяет запитывать бытовую энергосберегающую нагрузку. Единственное условие – наличие в схеме запирающего диода (обычно – диода Шотке). Он необходим для предотвращения появления обратных токов при отсутствии солнечных лучей.

Лучше всего паять ячейки, заранее расположив их в нужном порядке на будущей лицевой поверхности солнечной батареи. Расстояние между ячейками надо выдерживать около 5 мм.

Корпус

Корпус солнечной батареи выполняет несколько важных функций. Прежде всего он защищает ячейки от механических повреждений, а электрические контакты – от влаги и пыли. Поэтому материал корпуса должен быть обязательно влагостойким. Отлично подойдут фанера и деревянные рейки, обработанные влагоотталкивающим составом. Можно воспользоваться и алюминиевыми уголками (для боковых граней).

Для защиты лицевой стороны корпуса лучше использовать специальное закаленное стекло. Кстати, некоторые фирмы продают специальные стекла для солнечных батарей. Они достаточно прочны, чтобы выдерживать воздействия погодно-атмосферных факторов и при этом обладают хорошими оптическими характеристиками. Можно использовать и простое оргстекло.

Сборка

Когда каркас батареи будет готов, а элементы – спаяны, начинается непосредственная сборка изделия. Фотоячейки должны быть расположены на лицевой поверхности солнечной батареи (если это не было сделано перед пайкой, то придется перекладывать уже соединенные ячейки).

Следующие этап – герметизация системы. Для этих целей в промышленности применяют специальные компаунды, изготовление же своими руками позволяет воспользоваться силиконовым герметиком. Сначала система фиксируется по краям, затем – в середине, и лишь после этого герметиком заливаются промежутки между ячейками. Перед герметизацией лучше еще раз проверить качество пайки и надежность соединений.

Последняя стадия – соединение лицевой части корпуса с каркасом и их надежное скрепление. Также необходимо установить специальную коммутационную коробку, к которой будут подсоединены выводные рабочие контакты фотоячеек. Кроме того, коробка имеет отдельные разъемы для дальнейшего подключения солнечной батареи в систему. Монтируется она на тыльную сторону корпуса. Нередко в комплекте с такой коробкой продаются и соединительные кабели для коммутации панели. Коробка герметична и надежно защищает все электроконтакты от погодно-атмосферных факторов.

«Химическая» солнечная батарея

Домашнюю фотопанель можно сделать не только из кремниевых пластин, но и из обычной листовой меди. Правда, полученная таким образом батарея, будет обладать гораздо меньшей производительностью - ее хватит лишь для получения совсем небольшого тока. Однако и себестоимость ее изготовления, и затраты времени в несколько раз ниже.

Итак, нам понадобятся:

  • Два листа меди (размером примерно 15х15 см). Их можно найти и в хозяйственном магазине.
  • Два зажима-«крокодила».
  • Небольшой мультиметр или высокочувствительный амперметр (для фиксации токов 10-50 мкА).
  • Обычная электрическая плитка (мощностью более 1000 Вт для получения нужного нагрева).
  • Стеклянная банка (достаточно объема 2 л) или пластиковая бутыль с отрезанным горлом.
  • Обычная вода.
  • Поваренная соль (2 столовые ложки).

Также потребуются ножницы для нарезки меди и наждачная бумага или же металлическая щетка (для зачистки меди).

Изготовление

Сам процесс очень простой. В первую очередь необходимо отрезать два куска меди нужных размеров (чтобы они полностью помешались на ТЭНе или конфорке плитки). Затем тщательно промыть один лист с моющим средством, чтобы удалить все жировые загрязнения. Наждачной бумагой или щеткой лист очищается от возможного микрокорродирования или поверхностных сульфидов.

Затем лист нужно положить на плитку и включить ее на полную мощность. Медь начнет прогреваться и постепенно менять цвет с оттенков красного на черный. Это означает, что начала образовывать медная окись. Когда весь лист станет равномерно черным, можно начинать отсчет времени. Медь должна прокалиться еще полчаса. Это необходимо для того, чтобы образовался более толстый слой окиси. Впоследствии черный слой легко «отойдет», открыв многоцветный нижний слой. Именно он и потребуется для генерации энергии.

По истечении 30 минут плитку нужно отключить, оставив лист на конфорке. Медь должна остыть, причем очень медленно, иначе черная окись не отслоится. По мере остывания черный слой начнет «шелушиться», а так как окись и медь остывают с разными скоростями, то верхние хлопья начнут самостоятельно отскакивать от листа.

Примерно через 20 минут пластина остынет до комнатной температуры. Оставшиеся небольшие участки черной окиси надо аккуратно удалить под проточной водой. Ни в коем случае нельзя пользоваться губкой, моющими средствами и т.д., так как они повредят необходимый для фотореакции слой красно-фиолетовой меди.

Сборка

Собственно сборка не менее проста. Второй лист меди (он должен быть такого же размера) аккуратно сгибают по дуге и помещают в банку. Также поступают и с прокаленным листом. Пластины меди не должны касаться друг друга! Причем так как при прокаливании на верхней стороне листа образуется покрытие лучшего качества, то именно эта сторона и должна «смотреть наружу из банки».

Далее к пластинам подсоединяют «крокодилы». Провод от чистого листа подключают к «плюсу» измерительного прибора, от прокаленного – к «минусу». Затем соль растворяют в небольшом количестве обычной воды. Раствор выливают в банку, причем он должен отступать от края пластин примерно на 2 см (чтобы при перемещении банки не намочить контакты).

Все, солнечная батарея из меди готова! Правда, производительность ее минимальна, около 50 мкА на 0,25 В. Поэтому для бытовых практических целей она мало применима.

Желание сделать систему энергообеспечения частного дома более эффективной, экономичной и чистой с экологической точки зрения заставляет искать новые источники энергии. Одним из способов модернизации является установка солнечных батарей, способных преобразовывать энергию солнца в электрический ток. Существует прекрасная альтернатива дорогостоящему оборудованию - солнечная батарея, сделанная своими руками, которая позволит ежемесячно экономить средства из семейного бюджета. О том, как такую вещь соорудить, мы сегодня и будем говорить. Обозначим все подводные камни и расскажем как их обойти.

Общую информацию о конструктивных особенностях солнечных батарей смотрите на видео:

Разработка проекта солнечной энергосистемы

Проектирование необходимо для более удачного размещения панелей на крыше дома. Чем больше солнечных лучей попадет на поверхность батарей и чем выше их интенсивность, тем больше энергии они произведут. Для установки понадобится южная сторона кровли. В идеале лучи должны падать под углом 90 градусов, поэтому следует определить, в каком именно положении работа модулей принесет больше пользы.

Дело в том, что самодельная солнечная батарея, в отличие от заводской, не имеет специальных датчиков движения и концентраторов. Для изменения угла наклона существует возможность изготовить механизм на ручном управлении. Он позволит устанавливать модули почти вертикально в зимний период, когда солнце стоит низко над горизонтом, и опускать их летом, когда солнцестояние достигает своего пика. Вертикальное зимнее расположение имеет и защитную функцию: оно препятствует скапливанию на панелях снега и наледи, чем продлевает срок эксплуатации модулей.

Энергоэффективность модульной конструкции можно увеличить, если создать простейший механизм управления, который позволит менять угол наклона батареи в зависимости от времени года и даже времени суток

Возможно, перед монтажом батарей потребуется усиление кровельной конструкции, так как комплект из нескольких панелей имеет довольно большую массу. Необходимо вычислить нагрузку на крышу с учетом тяжести не только солнечных батарей, но и снежного пласта. Вес системы во многом зависит от материалов, которые применяются при ее изготовлении.

Количество панелей и их размер рассчитывают исходя из требующей мощности. Например, 1м² модуля производит приблизительно 120 Вт, этого не хватит даже для полноценного освещения жилых помещений. Примерно 1 кВт энергии при 10м² панелей позволит функционировать осветительным приборам, телевизору и компьютеру. Соответственно, солнечная конструкция площадью 20м² обеспечит нужды семьи из 3 человек. Приблизительно на такие размеры следует рассчитывать, если частный дом предназначен для постоянного проживания.

Изготовление солнечной батареи не обязательно заканчивается первоначальной сборкой, в дальнейшем можно наращивать элементы, тем самым увеличивая КПД оборудования

Варианты модулей для самостоятельной сборки

Основное назначение солнечной панели – генерировать энергию солнечных лучей и преобразовывать ее в электрическую. Полученный электроток представляет собой поток свободных электронов, высвобожденных световыми волнами. Для самостоятельной сборки оптимальным вариантом являются моно- и поликристаллические преобразователи, так как аналоги еще одного вида – аморфные – в течение первых двух лет снижают свою мощность на 20-40%.

Стандартные монокристаллические элементы имеют размеры 3 х 6 дюймов и довольно хрупкую структуру, поэтому работать с ними нужно крайне бережно и аккуратно

Разные виды кремниевых пластин имеют свои плюсы и минусы. Например, поликристаллические модули отличаются довольно низким КПД – до 9%, тогда как КПД монокристаллических пластин достигает 13%. Первые сохраняют показатели мощности даже в облачную погоду, но служат в среднем 10 лет, мощность вторых резко падает в пасмурные дни, зато они прекрасно функционируют на протяжении 25 лет.

Самодельное устройство должно быть функциональным и надежным, поэтому часть деталей лучше приобрести в готовом виде. Перед тем, как сделать солнечную батарею по индивидуальному проекту, загляните на сайт eBay, где можно обнаружить огромный выбор модулей с незначительным браком. Легкая поломка не влияет на качество работы, зато заметно уменьшает стоимость панелей. Предположим, монокристаллический модуль Solar Cells, расположенный на стеклотекстолитовой плате, стоит чуть больше 15 долларов, а поликристаллический комплект из 72 штук – около 90 долларов.

Лучший готовый вариант солнечного элемента - панель с проводниками, которые требуют лишь последовательного соединения. Модули без проводников стоят дешевле, но увеличивают время сборки батареи в несколько раз

Инструкция по изготовлению солнечной батареи

Вариантов самостоятельной сборки солнечных батарей множество. Технология зависит от количества солнечных элементов, приобретенных заранее, и дополнительных материалов, необходимых для изготовления корпуса. Важно запомнить: чем больше общая площадь панелей, тем мощнее оборудование, но вместе с тем вырастает и вес конструкции. В одной батарее рекомендуют применять одинаковые модули, так как эквивалентность тока приравнивается к показателям меньшего из элементов.

Сборка модульного каркаса

Дизайн модулей, как и их размеры, могут быть произвольными, поэтому вместо цифр ориентироваться следует на фото и выбрать любой индивидуальный вариант, подходящий для конкретных расчетов.

Наиболее дешевые солнечные элементы - панели без проводников. Чтобы сделать их готовыми к сборке батареи, необходимо первоначально припаять проводники, а это долгий и кропотливый процесс

Для изготовления корпуса, внутри которого будут закреплены солнечные элементы, необходимо подготовить следующий материал и инструмент:

  • листы фанеры выбранного размера;
  • невысокие рейки для бортиков;
  • клей универсальный или для древесины;
  • уголки и саморезы для крепежа;
  • дрель;
  • плиты ДВП;
  • куски оргстекла;
  • краска.

Берем кусок фанеры, который будет играть роль основания, и по периметру приклеиваем невысокие бортики. Рейки по краям листа не должны загораживать солнечные элементы, поэтому следим, чтобы высота их не превышала ¾ дюйма. Для надежности каждую приклеенную рейку дополнительно привинчиваем саморезами, а углы можно скрепить металлическими уголками.

Деревянный каркас - наиболее доступный вариант для размещения солнечных элементов. Его можно заменить рамой из алюминиевого уголка или покупным набором рама + стекло

Для вентиляции высверливаем отверстия в нижней части корпуса и по бортикам. Отверстий в крышке быть не должно, так как это грозит попаданием влаги. Крепление элементов будет производится на листы ДВП, которые можно заменить любым похожим материалом, главное условие – он не должен проводить электроток.

Маленькие отверстия для вентиляции необходимо просверлить по всей площади подложки, включая бортики и серединную рейку. Оно позволят регулировать уровень влаги и давления внутри каркаса

Крышку вырезаем из оргстекла, подгоняя под размеры корпуса. Обычное стекло слишком хрупкое для размещения на крыше. Для защиты деревянных частей используем специальную пропитку или краску, которой следует обработать каркас и подложку со всех сторон. Неплохо, если оттенок краски каркаса будет сочетаться с цветом кровельного покрытия.

Покраска выполняет не столько эстетическую функцию, сколько защитную. Каждую деталь следует покрыть минимум 2-3 слоями краски, чтобы в дальнейшем древесину не покоробило от влажного воздуха или перегрева

Монтаж солнечных элементов

Все солнечные модули раскладываем ровными рядами на подложке обратной стороной вверх, чтобы произвести пайку проводников. Для работы потребуется паяльник и припой. Места пайки предварительно необходимо обработать специальным карандашом. Для начала можно потренироваться на двух элементах, соединив их последовательно. Так же последовательно, цепочкой, соединяем все элементы на подложке, в результате должна получиться «змейка».

Каждый элемент устанавливаем строго по разметке и следим за тем, чтобы проводники соседних элементов пересекались в местах пайки

Соединив все элементы, аккуратно поворачиваем их лицевой стороной вверх. Если модулей много, придется пригласить помощников, так как одному спаянные элементы, не повредив, повернуть достаточно сложно. Но перед этим намазываем модули клеем, чтобы прочно закрепить их на панели. В качестве клея лучше использовать силиконовый герметик, причем наносить его следует строго по центру элемента, в одной точке, а не по краям. Это необходимо для предохранения пластин от поломок, если вдруг произойдет небольшая деформация основания. Лист фанеры может прогнуться или разбухнуть из-за изменения влажности, и стабильно приклеенные элементы просто треснут и выйдут из строя.

Закрепив модули на подложке, можно произвести пробный запуск панели и проверить функциональность. Затем основу помещаем в готовый уже каркас и фиксируем по краям шурупами. Чтобы исключить разряд аккумулятора через солнечную батарею, на панель устанавливаем блокировочный диод, закрепляя его герметиком.

Для соединения цепочек можно использовать медный провод или оплетку кабеля, которые фиксируют каждый элемент с обеих сторон, а затем закрепляются герметиком

Пробное тестирование помогает сделать предварительные расчеты. В данном случае они оказались верными - на солнце без нагрузки батарея производит 18,88 В

Сверху установленные элементы накрываем защитным экраном из оргстекла. Перед тем, как зафиксировать его, вновь проверяем работоспособность конструкции. Кстати, тестировать модули можно и в течении всего процесса установки и пайки, группами по нескольку штук. Следим за тем, чтобы герметик просох окончательно, так как его испарения могут покрыть оргстекло непрозрачной пленкой. Выходной провод оснащаем двухконтактным разъемом, чтобы в дальнейшем можно было использовать контроллер.

Одна панель собрана и полностью готова к работе. Все оборудование, включая купленные в интернете элементы, обошлось в 105 долларов

Фотоэлектрические системы частного дома

Электрические домашние системы энергообеспечения с использованием солнечных элементов можно разделить на 3 вида:

  • автономная;
  • гибридная;
  • безаккумуляторная.

Если дом подключен к центральной энергосети, то оптимальным вариантом будет смешанная система: днем питание производится от солнечных батарей, а ночью – от аккумуляторов. Центральная сеть в данном случае является резервом. Когда нет возможности подключиться к центральному энергоснабжению, его заменяют топливными генераторами – бензиновыми или дизельными.

Контроллер необходим для предотвращения короткого замыкания в момент максимальной нагрузки, аккумулятор – для накопления энергии, инвертор – для распределения и подачи ее к потребителю

При выборе наиболее удачного варианта следует учитывать время суток, в которое происходит максимальное потребление энергии. В частных домах пиковый период выпадает на вечер, когда солнце уже зашло, поэтому логичным будет использовать либо подключение к общей сети, либо дополнительное применение генераторов, так как солнечное энергоснабжение происходит в дневное время.

В фотоэлектрических системах энергоснабжения используют сети и с постоянным, и с переменным током, причем второй вариант подходит для размещения приборов на расстоянии более 15 м

Для дачников, режим работы которых часто совпадает со световым днем, подходит солнечная энергосберегающая система, которая начинает функционировать вместе с восходом солнца, а заканчивает вечером.