What does basic oxide mean? Basic oxides and their properties

28.09.2019 Radiators

SECTION II. INORGANIC CHEMISTRY

7. Main classes of inorganic compounds

7.1. oxides

Oxides are binary compounds of elements with oxygen, in which it exhibits an oxidation state- 2. Characteristic features of oxides:

oxidation state of oxygen- - 2;

oxygen atoms are not connected with each other, but are connected only with atoms of other elements;

the atoms of the element forming the oxide have the same oxidation state 1 .

Graphic formulas of oxides

Valency of the elements

Graphic formula

Not all binary compounds of oxygen are oxides:

Substance

Formula

Graphic formula

The oxidation state of oxygen

hydrogen peroxide

H2O2

H-O-O-H

sodium peroxide

Na2O2

Na-O-O-Na

oxygen fluoride

OF 2

F-O-F

By chemical nature, oxides are divided into non-saline and saline.

Non-saline oxides - NO, N 2 O, CO, SiO - these are oxides that are classified as reactive compounds, but salts are not formed during the reactions. They do not react with water, acids and bases under normal conditions (therefore, they are conditionally classified as oxides).

Salt oxides are oxides that form salts. Saline oxides are divided into basic (K 2 O, ВаО, MgO, FeO), acid (SO 2, SO 3, N 2 O 5, P 2 O 5) and amphoteric (ZnO, А l 2 O 3, Cr 2 O 3, BeO).

Nomenclature of oxides

The name of oxides consists of the name of the element, after which, when the element exhibits several oxidation states, the degree of its oxidation is indicated in brackets in Roman numerals and the word "oxide" is added. For example:

K 2 O - potassium oxide;

Fe2O3 - ferrum(ІІІ) oxide;

C u 2 O - cuprum(I) oxide;

MgO - magnesium oxide;

P 2 O 5 - phosphorus (V) oxide;

A l 2 O 3 - aluminum oxide;

CO - carbon(II) oxide.

Some oxides that have long been known to man also have trivial names: CaO - quicklime, FROM O2 - carbon dioxide, SO 2 - sulfur dioxide.

Obtaining oxides

1. Interaction of simple substances (metals and non-metals) with oxygen:

2. Oxidation of complex substances:

3. Thermal decomposition:

basics:

salts:

amphoteric hydroxides:

Some acids:

4. During some other reactions:

______________________________________________________

1 Double "oxide" ( FeFe 2 ) O 4 contains Ferum with different oxidation states (+2 and +3) and upon interaction with acidic oxides forms two different salts.

7.1.1. Basic oxides

Basic oxides are oxides whose hydrates are bases. All basic oxides are oxides of metallic elements that exhibit low oxidation states (+1, +2). The main oxides are:

oxides of metal elements of the main subgroups I and II groups (except Be);

oxides of monovalent elements, divalent, except BeO , ZnO , Г b O, which are amphoteric;

oxides of transition metal elements in low oxidation states(NiO, FeO, M n O, C rO ).

Basic oxides correspond to bases:

Na 2 O - NaOH

MgO - Mg (OH) 2

FeO - Fe (OH) 2

BaO - Ba (OH) 2

CrO - Cr(OH) 2

The type of chemical bond in basic oxides is predominantly ionic.

Chemical properties of basic oxides

1. Interaction with acids to form salts:

2. Interaction with acid oxides to form salts:

3. Interaction with water. Only oxides of alkali and alkaline earth metal elements interact with water, forming alkalis:

4. Interaction with amphoteric oxides. The reaction takes place during fusion. Amphoteric oxide in this reaction exhibits acidic properties:

5. Interaction with amphoteric bases. The reaction occurs during fusion:

Oxides are complex substances consisting of two elements, one of which is oxygen. Oxides can be salt-forming and non-salt-forming: one type of salt-forming oxides are basic oxides. How do they differ from other species, and what are their chemical properties?

Salt-forming oxides are divided into basic, acidic and amphoteric oxides. If basic oxides correspond to bases, then acidic oxides correspond to acids, and amphoteric oxides correspond to amphoteric formations. Amphoteric oxides are compounds that, depending on the conditions, can exhibit either basic or acidic properties.

Rice. 1. Classification of oxides.

The physical properties of oxides are very diverse. They can be both gases (CO 2) and solid (Fe 2 O 3) or liquid substances (H 2 O).

However, most of the basic oxides are solids of various colors.

oxides in which the elements exhibit their highest activity are called higher oxides. The order of increase in the acidic properties of the higher oxides of the corresponding elements in periods from left to right is explained by the gradual increase in the positive charge of the ions of these elements.

Chemical properties of basic oxides

Basic oxides are oxides that correspond to bases. For example, the basic oxides K 2 O, CaO correspond to the bases KOH, Ca (OH) 2.

Rice. 2. Basic oxides and their corresponding bases.

Basic oxides are formed by typical metals, as well as metals of variable valence in the lowest oxidation state (for example, CaO, FeO), react with acids and acid oxides, forming salts:

CaO (basic oxide) + CO 2 (acid oxide) \u003d CaCO 3 (salt)

FeO (basic oxide) + H 2 SO 4 (acid) \u003d FeSO 4 (salt) + 2H 2 O (water)

Basic oxides also interact with amphoteric oxides, resulting in the formation of a salt, for example:

Only oxides of alkali and alkaline earth metals react with water:

BaO (basic oxide) + H 2 O (water) \u003d Ba (OH) 2 (alkaline earth metal base)

Many basic oxides tend to be reduced to substances consisting of atoms of one chemical element:

3CuO + 2NH 3 \u003d 3Cu + 3H 2 O + N 2

When heated, only oxides of mercury and precious metals decompose:

Rice. 3. Mercury oxide.

List of main oxides:

Oxide name Chemical formula Properties
calcium oxide CaO quicklime, white crystalline substance
magnesium oxide MgO white matter, insoluble in water
barium oxide BaO colorless crystals with a cubic lattice
Copper oxide II CuO black substance practically insoluble in water
HgO red or yellow-orange solid
potassium oxide K2O colorless or pale yellow substance
sodium oxide Na2O a substance consisting of colorless crystals
lithium oxide Li2O a substance consisting of colorless crystals that have a cubic lattice structure

Today we begin our acquaintance with the most important classes of inorganic compounds. Inorganic substances are divided by composition, as you already know, into simple and complex.


OXIDE

ACID

BASE

SALT

E x O y

HnA

A - acid residue

Me(OH)b

OH - hydroxyl group

Me n A b

Complex inorganic substances are divided into four classes: oxides, acids, bases, salts. We start with the oxide class.

OXIDES

oxides - these are complex substances consisting of two chemical elements, one of which is oxygen, with a valence equal to 2. Only one chemical element - fluorine, combining with oxygen, forms not an oxide, but oxygen fluoride OF 2.
They are called simply - "oxide + element name" (see table). If the valency of a chemical element is variable, then it is indicated by a Roman numeral enclosed in round brackets, after the name of a chemical element.

Formula

Name

Formula

Name

carbon monoxide (II)

Fe2O3

iron(III) oxide

nitric oxide (II)

CrO3

chromium(VI) oxide

Al2O3

aluminium oxide

zinc oxide

N 2 O 5

nitric oxide (V)

Mn2O7

manganese(VII) oxide

Classification of oxides

All oxides can be divided into two groups: salt-forming (basic, acidic, amphoteric) and non-salt-forming or indifferent.

metal oxides Me x O y

Non-metal oxides neMe x O y

Main

Acidic

Amphoteric

Acidic

Indifferent

I, II

Me

V-VII

Me

ZnO, BeO, Al 2 O 3,

Fe 2 O 3 , Cr 2 O 3

> II

neMe

I, II

neMe

CO, NO, N 2 O

1). Basic oxides are oxides that correspond to bases. The main oxides are oxides metals 1 and 2 groups, as well as metals side subgroups with valency I and II (except ZnO - zinc oxide and BeO – beryllium oxide):

2). Acid oxides are oxides to which acids correspond. Acid oxides are non-metal oxides (except for non-salt-forming - indifferent), as well as metal oxides side subgroups with valency from V before VII (For example, CrO 3 is chromium (VI) oxide, Mn 2 O 7 is manganese (VII) oxide):


3). Amphoteric oxides are oxides, which correspond to bases and acids. These include metal oxides main and secondary subgroups with valency III , sometimes IV , as well as zinc and beryllium (For example, BeO, ZnO, Al 2 O 3, Cr 2 O 3).

4). Non-salt-forming oxides are oxides that are indifferent to acids and bases. These include non-metal oxides with valency I and II (For example, N 2 O, NO, CO).

Conclusion: the nature of the properties of oxides primarily depends on the valency of the element.

For example, chromium oxides:

CrO(II- main);

Cr 2 O 3 (III- amphoteric);

CrO 3 (VII- acid).

Classification of oxides

(by solubility in water)

Acid oxides

Basic oxides

Amphoteric oxides

Soluble in water.

Exception - SiO 2

(not soluble in water)

Only oxides of alkali and alkaline earth metals dissolve in water.

(these are metals

I "A" and II "A" groups,

exception Be , Mg )

They do not interact with water.

Insoluble in water

Complete the tasks:

1. Write down separately the chemical formulas of salt-forming acidic and basic oxides.

NaOH, AlCl 3 , K 2 O, H 2 SO 4 , SO 3 , P 2 O 5 , HNO 3 , CaO, CO.

2. Substances are given : CaO, NaOH, CO 2 , H 2 SO 3 , CaCl 2 , FeCl 3 , Zn(OH) 2 , N 2 O 5 , Al 2 O 3 , Ca(OH) 2 , CO 2 , N 2 O, FeO, SO 3 , Na 2 SO 4 , ZnO, CaCO 3 , Mn 2 O 7 , CuO, KOH, CO, Fe(OH) 3

Write down the oxides and classify them.

Obtaining oxides

Simulator "Interaction of oxygen with simple substances"

1. Combustion of substances (Oxidation by oxygen)

a) simple substances

Training apparatus

2Mg + O 2 \u003d 2MgO

b) complex substances

2H 2 S + 3O 2 \u003d 2H 2 O + 2SO 2

2. Decomposition of complex substances

(use table of acids, see appendices)

a) salt

SALTt= BASIC OXIDE + ACID OXIDE

CaCO 3 \u003d CaO + CO 2

b) Insoluble bases

Me(OH)bt= Me x O y+ H 2 O

Cu (OH) 2 t \u003d CuO + H 2 O

c) oxygen-containing acids

HnA=ACID OXIDE + H 2 O

H 2 SO 3 \u003d H 2 O + SO 2

Physical properties of oxides

At room temperature most oxides are solids (CaO, Fe 2 O 3, etc.), some are liquids (H 2 O, Cl 2 O 7, etc.) and gases (NO, SO 2, etc.).

Chemical properties of oxides

CHEMICAL PROPERTIES OF BASIC OXIDES

1. Basic oxide + Acid oxide \u003d Salt (r. compounds)

CaO + SO 2 \u003d CaSO 3

2. Basic oxide + Acid \u003d Salt + H 2 O (r. exchange)

3 K 2 O + 2 H 3 PO 4 = 2 K 3 PO 4 + 3 H 2 O

3. Basic oxide + Water \u003d Alkali (r. compounds)

Na 2 O + H 2 O \u003d 2 NaOH

CHEMICAL PROPERTIES OF ACID OXIDES

1. Acid oxide + Water \u003d Acid (p. Compounds)

With O 2 + H 2 O \u003d H 2 CO 3, SiO 2 - does not react

2. Acid oxide + Base \u003d Salt + H 2 O (r. exchange)

P 2 O 5 + 6 KOH \u003d 2 K 3 PO 4 + 3 H 2 O

3. Basic oxide + Acid oxide \u003d Salt (p. Compound)

CaO + SO 2 \u003d CaSO 3

4. Less volatiles displace more volatiles from their salts

CaCO 3 + SiO 2 \u003d CaSiO 3 + CO 2

CHEMICAL PROPERTIES OF AMPHOTERIC OXIDES

They interact with both acids and alkalis.

ZnO + 2 HCl = ZnCl 2 + H 2 O

ZnO + 2 NaOH + H 2 O \u003d Na 2 [Zn (OH) 4] (in solution)

ZnO + 2 NaOH = Na 2 ZnO 2 + H 2 O (when fused)

Application of oxides

Some oxides do not dissolve in water, but many react with water to combine:

SO 3 + H 2 O \u003d H 2 SO 4

CaO + H 2 O = Ca( Oh) 2

As a result, very necessary and useful compounds. For example, H 2 SO 4 - sulphuric acid, Ca (OH) 2 - slaked lime, etc.

If oxides are insoluble in water, then people skillfully use this property as well. For example, zinc oxide ZnO is a white substance, therefore it is used to prepare white oil paint(zinc white). Since ZnO is practically insoluble in water, any surface can be painted with zinc white, including those that are exposed to atmospheric precipitation. Insolubility and non-toxicity make it possible to use this oxide in the manufacture of cosmetic creams and powders. Pharmacists make it an astringent and drying powder for external use.

Titanium oxide (IV) - TiO 2 has the same valuable properties. He also has a handsome White color and is used for the manufacture of titanium white. TiO 2 is insoluble not only in water, but also in acids; therefore, coatings made of this oxide are particularly stable. This oxide is added to plastic to give it a white color. It is part of the enamels for metal and ceramic utensils.

Chromium oxide (III) - Cr 2 O 3 - very strong crystals of dark green color, insoluble in water. Cr 2 O 3 is used as a pigment (paint) in the manufacture of decorative green glass and ceramics. The well-known GOI paste (short for the name “State Optical Institute”) is used for grinding and polishing optics, metal products in jewelry.

Due to the insolubility and strength of chromium (III) oxide, it is also used in printing inks (for example, for coloring banknotes). In general, oxides of many metals are used as pigments for a wide variety of paints, although this is by no means their only application.

Tasks for fixing

1. Write down separately the chemical formulas of salt-forming acidic and basic oxides.

NaOH, AlCl 3 , K 2 O, H 2 SO 4 , SO 3 , P 2 O 5 , HNO 3 , CaO, CO.

2. Substances are given : CaO, NaOH, CO 2 , H 2 SO 3 , CaCl 2 , FeCl 3 , Zn(OH) 2 , N 2 O 5 , Al 2 O 3 , Ca(OH) 2 , CO 2 , N 2 O, FeO, SO 3 , Na 2 SO 4 , ZnO, CaCO 3 , Mn 2 O 7 , CuO, KOH, CO, Fe(OH) 3

Choose from the list: basic oxides, acid oxides, indifferent oxides, amphoteric oxides and give them names.

3. Finish UCR, indicate the type of reaction, name the reaction products

Na 2 O + H 2 O =

N 2 O 5 + H 2 O =

CaO + HNO 3 =

NaOH + P 2 O 5 \u003d

K 2 O + CO 2 \u003d

Cu (OH) 2 \u003d? +?

4. Carry out the transformations according to the scheme:

1) K → K 2 O → KOH → K 2 SO 4

2) S → SO 2 → H 2 SO 3 → Na 2 SO 3

3) P → P 2 O 5 → H 3 PO 4 → K 3 PO 4

Oxides complex substances are called, the composition of the molecules of which includes oxygen atoms in the oxidation state - 2 and some other element.

can be obtained by direct interaction of oxygen with another element, or indirectly (for example, by the decomposition of salts, bases, acids). Under normal conditions, oxides are in a solid, liquid and gaseous state, this type of compounds is very common in nature. oxides are found in Earth's crust. Rust, sand, water, carbon dioxide are oxides.

They are salt-forming and non-salt-forming.

Salt-forming oxides are oxides that, as a result, chemical reactions form salts. These are oxides of metals and non-metals, which, when interacting with water, form the corresponding acids, and when interacting with bases, the corresponding acidic and normal salts. For example, copper oxide (CuO) is a salt-forming oxide, because, for example, when it reacts with hydrochloric acid (HCl), a salt is formed:

CuO + 2HCl → CuCl 2 + H 2 O.

As a result of chemical reactions, other salts can be obtained:

CuO + SO 3 → CuSO 4.

Non-salt-forming oxides called oxides that do not form salts. An example is CO, N 2 O, NO.

Salt-forming oxides, in turn, are of 3 types: basic (from the word « base » ), acidic and amphoteric.

Basic oxides such metal oxides are called, which correspond to hydroxides belonging to the class of bases. Basic oxides include, for example, Na 2 O, K 2 O, MgO, CaO, etc.

Chemical properties of basic oxides

1. Water-soluble basic oxides react with water to form bases:

Na 2 O + H 2 O → 2NaOH.

2. Interact with acid oxides, forming the corresponding salts

Na 2 O + SO 3 → Na 2 SO 4.

3. React with acids to form salt and water:

CuO + H 2 SO 4 → CuSO 4 + H 2 O.

4. React with amphoteric oxides:

Li 2 O + Al 2 O 3 → 2LiAlO 2 .

If the second element in the composition of the oxides is a non-metal or a metal exhibiting a higher valency (usually exhibits from IV to VII), then such oxides will be acidic. Acid oxides (acid anhydrides) are oxides that correspond to hydroxides belonging to the class of acids. This is, for example, CO 2, SO 3, P 2 O 5, N 2 O 3, Cl 2 O 5, Mn 2 O 7, etc. Acid oxides dissolve in water and alkalis, forming salt and water.

Chemical properties of acid oxides

1. Interact with water, forming acid:

SO 3 + H 2 O → H 2 SO 4.

But not all acidic oxides directly react with water (SiO 2 and others).

2. React with based oxides to form a salt:

CO 2 + CaO → CaCO 3

3. Interact with alkalis, forming salt and water:

CO 2 + Ba (OH) 2 → BaCO 3 + H 2 O.

Part amphoteric oxide includes an element that has amphoteric properties. Amphotericity is understood as the ability of compounds to exhibit acidic and basic properties depending on the conditions. For example, zinc oxide ZnO can be both a base and an acid (Zn(OH) 2 and H 2 ZnO 2). Amphotericity is expressed in the fact that, depending on the conditions, amphoteric oxides exhibit either basic or acidic properties.

Chemical properties of amphoteric oxides

1. Interact with acids to form salt and water:

ZnO + 2HCl → ZnCl 2 + H 2 O.

2. React with solid alkalis (during fusion), forming as a result of the reaction salt - sodium zincate and water:

ZnO + 2NaOH → Na 2 ZnO 2 + H 2 O.

When zinc oxide interacts with an alkali solution (the same NaOH), another reaction occurs:

ZnO + 2 NaOH + H 2 O => Na 2.

Coordination number - a characteristic that determines the number of nearest particles: atoms or ions in a molecule or crystal. Each amphoteric metal has its own coordination number. For Be and Zn it is 4; For and Al is 4 or 6; For and Cr it is 6 or (very rarely) 4;

Amphoteric oxides usually do not dissolve in water and do not react with it.

Do you have any questions? Want to know more about oxides?
To get the help of a tutor - register.
The first lesson is free!

site, with full or partial copying of the material, a link to the source is required.

Oxides complex substances are called, the composition of the molecules of which includes oxygen atoms in the oxidation state - 2 and some other element.

can be obtained by direct interaction of oxygen with another element, or indirectly (for example, by the decomposition of salts, bases, acids). Under normal conditions, oxides are in a solid, liquid and gaseous state, this type of compounds is very common in nature. Oxides are found in the Earth's crust. Rust, sand, water, carbon dioxide are oxides.

They are salt-forming and non-salt-forming.

Salt-forming oxides- These are oxides that form salts as a result of chemical reactions. These are oxides of metals and non-metals, which, when interacting with water, form the corresponding acids, and when interacting with bases, the corresponding acidic and normal salts. For example, copper oxide (CuO) is a salt-forming oxide, because, for example, when it reacts with hydrochloric acid (HCl), a salt is formed:

CuO + 2HCl → CuCl 2 + H 2 O.

As a result of chemical reactions, other salts can be obtained:

CuO + SO 3 → CuSO 4.

Non-salt-forming oxides called oxides that do not form salts. An example is CO, N 2 O, NO.

Salt-forming oxides, in turn, are of 3 types: basic (from the word « base » ), acidic and amphoteric.

Basic oxides such metal oxides are called, which correspond to hydroxides belonging to the class of bases. Basic oxides include, for example, Na 2 O, K 2 O, MgO, CaO, etc.

Chemical properties of basic oxides

1. Water-soluble basic oxides react with water to form bases:

Na 2 O + H 2 O → 2NaOH.

2. Interact with acid oxides, forming the corresponding salts

Na 2 O + SO 3 → Na 2 SO 4.

3. React with acids to form salt and water:

CuO + H 2 SO 4 → CuSO 4 + H 2 O.

4. React with amphoteric oxides:

Li 2 O + Al 2 O 3 → 2LiAlO 2 .

If the second element in the composition of the oxides is a non-metal or a metal exhibiting a higher valency (usually exhibits from IV to VII), then such oxides will be acidic. Acid oxides (acid anhydrides) are oxides that correspond to hydroxides belonging to the class of acids. This is, for example, CO 2, SO 3, P 2 O 5, N 2 O 3, Cl 2 O 5, Mn 2 O 7, etc. Acid oxides dissolve in water and alkalis, forming salt and water.

Chemical properties of acid oxides

1. Interact with water, forming acid:

SO 3 + H 2 O → H 2 SO 4.

But not all acidic oxides directly react with water (SiO 2 and others).

2. React with based oxides to form a salt:

CO 2 + CaO → CaCO 3

3. Interact with alkalis, forming salt and water:

CO 2 + Ba (OH) 2 → BaCO 3 + H 2 O.

Part amphoteric oxide includes an element that has amphoteric properties. Amphotericity is understood as the ability of compounds to exhibit acidic and basic properties depending on the conditions. For example, zinc oxide ZnO can be both a base and an acid (Zn(OH) 2 and H 2 ZnO 2). Amphotericity is expressed in the fact that, depending on the conditions, amphoteric oxides exhibit either basic or acidic properties.

Chemical properties of amphoteric oxides

1. Interact with acids to form salt and water:

ZnO + 2HCl → ZnCl 2 + H 2 O.

2. React with solid alkalis (during fusion), forming as a result of the reaction salt - sodium zincate and water:

ZnO + 2NaOH → Na 2 ZnO 2 + H 2 O.

When zinc oxide interacts with an alkali solution (the same NaOH), another reaction occurs:

ZnO + 2 NaOH + H 2 O => Na 2.

Coordination number - a characteristic that determines the number of nearest particles: atoms or ions in a molecule or crystal. Each amphoteric metal has its own coordination number. For Be and Zn it is 4; For and Al is 4 or 6; For and Cr it is 6 or (very rarely) 4;

Amphoteric oxides usually do not dissolve in water and do not react with it.

Do you have any questions? Want to know more about oxides?
To get help from a tutor -.
The first lesson is free!

blog.site, with full or partial copying of the material, a link to the source is required.