Найпростіші завдання із прямою на площині. Взаємне розташування прямих. Кут між прямими. Як знаходити відстань від точки до прямої? Знайти відстань від точки М до прямої: формула

09.10.2019 Радіатори

Ця стаття розповідає про тему « відстані від точки до прямої », розглядаються визначення відстані від точки до прямої з ілюстрованими прикладами методом координат. Кожен блок теорії наприкінці має показані приклади розв'язання таких завдань.

Yandex.RTB R-A-339285-1

Відстань від точки до прямої знаходиться через визначення відстані від точки до точки. Розглянемо докладніше.

Нехай є пряма a і точка М 1 не належить заданої прямої. Через неї проведемо пряму b, розташовану перпендикулярно щодо прямої a. Точка перетину прямих візьмемо за Н1. Отримаємо, що М 1 Н 1 перпендикуляром, який опустили з точки М 1 до прямої a .

Визначення 1

Відстанню від точки М 1 до прямої aназивається відстань між точками М1 і Н1.

Бувають записи визначення із фігуруванням довжини перпендикуляра.

Визначення 2

Відстань від точки до прямоїназивають довжину перпендикуляра, проведеного з цієї точки до цієї прямої.

Визначення еквівалентні. Розглянемо малюнок, наведений нижче.

Відомо, що відстань від точки до прямої є найменшою з усіх можливих. Розглянемо це з прикладу.

Якщо взяти точку Q , що лежить на прямій a не збігається з точкою М 1 тоді отримаємо, що відрізок М 1 Q називається похилою, опущеної з М 1 до прямої a . Необхідно позначити, що перпендикуляр з точки М 1 є меншим, ніж будь-яка інша похила, проведена з точки до прямої.

Щоб довести це, розглянемо трикутник М 1 Q 1 Н 1 де М 1 Q 1 є гіпотенузою. Відомо, що її довжина завжди більша за довжину будь-якого з катетів. Отже, маємо, що M 1 H 1< M 1 Q . Рассмотрим рисунок, приведенный ниже.

Вихідні дані для знаходження від точки до прямої дозволяють використовувати кілька методів розв'язання: через теорему Піфагора, визначення синуса, косинуса, тангенсу кута та інші. Більшість завдань такого типу вирішують у школі під час уроків геометрії.

Коли при знаходженні відстані від точки до прямої можна ввести прямокутну систему координат, то застосовують метод координат. У цьому пункті розглянемо два основних методи знаходження шуканої відстані від заданої точки.

Перший спосіб має на увазі пошук відстані як перпендикуляра, проведеного з М 1 до прямої a . У другому способі використовується нормальне рівняння прямої а для знаходження шуканої відстані.

Якщо на площині є точка з координатами M 1 (x 1 , y 1) , розташована в прямокутній системі координат, пряма a , а необхідно знайти відстань M 1 H 1 можна обчислення двома способами. Розглянемо їх.

Перший спосіб

Якщо є координати точки H 1 рівні x 2 y 2 тоді відстань від точки до прямої обчислюється по координатах з формули M 1 H 1 = (x 2 - x 1) 2 + (y 2 - y 1) 2 .

Тепер перейдемо до знаходження координат точки Н1.

Відомо, що пряма лінія О х у відповідає рівнянню прямої на площині. Візьмемо спосіб завдання прямої через написання загального рівняння прямої або рівняння з кутовим коефіцієнтом. Складаємо рівняння прямої, яка проходить через точку М1 перпендикулярно заданої прямої a. Пряму позначимо буковою b. Н 1 є точкою перетину прямих a і b означає для визначення координат необхідно скористатися статтею, в якій йдеться про координати точок перетину двох прямих.

Видно, що алгоритм знаходження відстані від заданої точки M 1 (x 1 , y 1) до прямої a проводиться згідно з пунктами:

Визначення 3

  • знаходження загального рівняння прямої a має вигляд A 1 x + B 1 y + C 1 = 0 або рівняння з кутовим коефіцієнтом, що має вигляд y = k 1 x + b 1 ;
  • отримання загального рівняння прямої b , що має вигляд A 2 x + B 2 y + C 2 = 0 або рівняння з кутовим коефіцієнтом y = k 2 x + b 2 якщо пряма b перетинає точку М 1 і є перпендикулярною до заданої прямої a ;
  • визначення координат x 2 , y 2 точки Н 1 , що є точкою перетину a і b для цього проводиться рішення системи лінійних рівнянь A 1 x + B 1 y + C 1 = 0 A 2 x + B 2 y + C 2 = 0 або y = k 1 x + b 1 y = k 2 x + b 2;
  • обчислення шуканої відстані від точки до прямої, використовуючи формулу M 1 H 1 = (x 2 - x 1) 2 + (y 2 - y 1) 2 .

Другий спосіб

Теорема здатна допомогти відповісти на питання про знаходження відстані від заданої точки дот заданої прямої на площині.

Теорема

Прямокутна система координат має О х у має точку M 1 (x 1 , y 1) , з якої проведена пряма а до площини, що задається нормальним рівнянням площини, що має вигляд cos α · x + cos β · y - p = 0 , рівно по модулю значенням, одержуваному в лівій частині нормального рівняння прямої, що обчислюється при x = x 1 , y = y 1 означає, що M 1 H 1 = cos α · x 1 + cos β · y 1 - p .

Доведення

Прямий а відповідає нормальне рівняння площини, що має вигляд cos α · x + cos β · y - p = 0 тоді n → = (cos α , cos β) вважається нормальним вектором прямої a при відстані від початку координат до прямої a з p одиницями . Необхідно зобразити всі дані на малюнку, додати точку з координатами M 1 (x 1 y 1) , де радіус-вектор точки М 1 - O M 1 → = (x 1 y 1) . Необхідно провести пряму від точки до прямої, яку позначимо M1H1. Необхідно показати проекції М 2 і Н 2 точок М 1 і Н 2 на пряму, що проходить через точку O з напрямним вектором виду n → = (cos α , cos β) , а числову проекцію вектора позначимо як O M 1 → = (x 1 y 1) до напрямку n → = (cos α , cos β) як n p n → O M 1 → .

Варіації залежать від розташування точки М 1 . Розглянемо малюнку, наведеному нижче.

Результати фіксуємо за допомогою формули M 1 H 1 = n p n → O M → 1 - p. Після чого наводимо рівність до такого виду M 1 H 1 = cos α · x 1 + cos β · y 1 - p для того, щоб отримати n p n → OM → 1 = cos α · x 1 + cos β · y 1 .

Скалярний добуток векторів у результаті дає перетворену формулу виду n → , O M → 1 = n → · n p n → O M 1 → = 1 · n p n → O M 1 → = n p n → O M 1 → , яка є твором у координатній формі виду n → , O M 1 → = cos α · x 1 + cos β · y 1 . Отже, отримуємо, що n p n → O M 1 → = cos α · x 1 + cos β · y 1 . Звідси випливає, що M 1 H 1 = n p n → O M 1 → - p = cos α · x 1 + cos β · y 1 - p . Теорему доведено.

Отримуємо, що знаходження відстані від точки M 1 (x 1 , y 1) до прямої a на площині необхідно виконати кілька дій:

Визначення 4

  • отримання нормального рівняння прямої a cos α · x + cos β · y - p = 0 за умови, що його немає в завданні;
  • обчислення виразу cos α · x 1 + cos β · y 1 - p , де отримане значення приймає M 1 H 1 .

Застосуємо ці методи на розв'язанні задач зі знаходженням відстані від точки до площини.

Приклад 1

Знайти відстань від точки з координатами M 1 (-1,2) до прямої 4 x - 3 y + 35 = 0 .

Рішення

Застосуємо перший спосіб вирішення.

Для цього необхідно знайти загальне рівняння прямої b, яка проходить через задану точку M 1 (- 1, 2), перпендикулярно до прямої 4 x - 3 y + 35 = 0 . З умови видно, що пряма b є перпендикулярною прямою a тоді її напрямний вектор має координати, рівні (4 , - 3) . Таким чином маємо можливість записати канонічне рівняння прямої b на площині, оскільки є координати точки М 1 належить прямий b . Визначимо координати напрямного вектора прямої b. Отримаємо, що x - (-1) 4 = y - 2 - 3 ⇔ x + 1 4 = y - 2 - 3 . Отримане канонічне рівняння необхідно перетворити на загальне. Тоді отримуємо, що

x + 1 4 = y - 2 - 3 ⇔ - 3 · (x + 1) = 4 · (y - 2) ⇔ 3 x + 4 y - 5 = 0

Зробимо знаходження координат точок перетину прямих, яке приймемо за позначення Н1. Перетворення виглядають таким чином:

4 x - 3 y + 35 = 0 3 x + 4 y - 5 = 0 ⇔ x = 3 4 y - 35 4 3 x + 4 y - 5 = 0 ⇔ x = 3 4 y - 35 4 3 · 3 4 y - 35 4 + 4 y - 5 = 0 ⇔ ⇔ x = 3 4 y - 35 4 y = 5 ⇔ x = 3 4 · 5 - 35 4 y = 5 ⇔ x = - 5 y = 5

З вище написаного маємо, що координати точки Н 1 дорівнюють (- 5 ; 5) .

Необхідно обчислити відстань від точки М1 до прямої a. Маємо, що координати точок M 1 (- 1 , 2) і H 1 (- 5 , 5) тоді підставляємо у формулу для знаходження відстані і отримуємо, що

M 1 H 1 = (-5 - (-1) 2 + (5 - 2) 2 = 25 = 5

Другий спосіб розв'язання.

Для того щоб вирішити іншим способом, необхідно отримати нормальне рівняння прямої. Обчислюємо значення множника, що нормує, і множимо обидві частини рівняння 4 x - 3 y + 35 = 0 . Звідси отримаємо, що множник, що нормує, дорівнює - 1 4 2 + (- 3) 2 = - 1 5 , а нормальне рівняння буде виду - 1 5 · 4 x - 3 y + 35 = - 1 5 · 0 ⇔ - 4 5 x + 3 5 y - 7 = 0 .

За алгоритмом обчислення необхідно отримати нормальне рівняння прямої та обчислити його зі значеннями x = -1, y = 2. Тоді отримуємо, що

4 5 · - 1 + 3 5 · 2 - 7 = - 5

Звідси отримуємо, що відстань від точки M 1 (- 1 , 2) до заданої прямої 4 x - 3 y + 35 = 0 має значення - 5 = 5 .

Відповідь: 5 .

Видно, що в даному методі важливим є використання нормального рівняння прямої, оскільки такий спосіб є найбільш коротким. Але перший спосіб зручний тим, що послідовний і логічний, хоча має більше пунктів обчислення.

Приклад 2

На площині є прямокутна система координат О х у з точкою M 1 (8 , 0) і прямою y = 1 2 x + 1 . Знайти відстань від заданої точки до прямої.

Рішення

Рішення першим способом передбачає приведення заданого рівняння з кутовим коефіцієнтом до рівняння загального виду. Для спрощення можна зробити по-іншому.

Якщо добуток кутових коефіцієнтів перпендикулярних прямих мають значення - 1, значить кутовий коефіцієнт прямої перпендикулярної заданої y = 1 2 x + 1 має значення 2 . Тепер отримаємо рівняння прямої, що проходить через точку з координатами M 1 (8, 0). Маємо, що y – 0 = – 2 · (x – 8) ⇔ y = – 2 x + 16 .

Переходимо до знаходження координат точки Н 1 , тобто точок перетину y = - 2 x + 16 і y = 1 2 x + 1 . Складаємо систему рівнянь та отримуємо:

y = 1 2 x + 1 y = - 2 x + 16 ⇔ y = 1 2 x + 1 1 2 x + 1 = - 2 x + 16 ⇔ y = 1 2 x + 1 x = 6 ⇔ ⇔ y = 1 2 · 6 + 1 x = 6 = y = 4 x = 6 ⇒ H 1 (6 , 4)

Звідси випливає, що відстань від точки з координатами M 1 (8 , 0) до прямої y = 1 2 x + 1 дорівнює відстані від точки початку та точки кінця з координатами M 1 (8 , 0) та H 1 (6 , 4) . Обчислимо та отримаємо, що M 1 H 1 = 6 - 8 2 + (4 - 0) 2 20 = 2 5 .

Рішення другим способом полягає у переході від рівняння з коефіцієнтом до його нормального виду. Тобто отримаємо y = 1 2 x + 1 ⇔ 1 2 x - y + 1 = 0 тоді значення нормуючого множника буде - 1 1 2 2 + (- 1) 2 = - 2 5 . Звідси випливає, що нормальне рівняння прямої набуває вигляду - 2 5 · 1 2 x - y + 1 = - 2 5 · 0 ⇔ - 1 5 x + 2 5 y - 2 5 = 0 . Зробимо обчислення від точки M 1 8 0 до прямої виду - 1 5 x + 2 5 y - 2 5 = 0 . Отримуємо:

M 1 H 1 = - 1 5 · 8 + 2 5 · 0 - 2 5 = - 10 5 = 2 5

Відповідь: 2 5 .

Приклад 3

Необхідно обчислити відстань від точки з координатами M 1 (- 2 , 4) до прямих 2 x - 3 = 0 та y + 1 = 0 .

Рішення

Отримуємо рівняння нормального виду прямої 2 x - 3 = 0:

2 x - 3 = 0 ⇔ 1 2 · 2 x - 3 = 1 2 · 0 ⇔ x - 3 2 = 0

Після чого переходимо до обчислення відстані від точки M 1 - 2 4 до прямої x - 3 2 = 0 . Отримуємо:

M 1 H 1 = - 2 - 3 2 = 3 1 2

Рівняння прямої y + 1 = 0 має множник, що нормує, зі значенням рівним -1. Це означає, що рівняння набуде вигляду - y - 1 = 0 . Переходимо до обчислення відстані від точки M 1 (- 2 , 4) до прямої - y - 1 = 0 . Отримаємо, що вона дорівнює - 4 - 1 = 5 .

Відповідь: 3 1 2 та 5 .

Докладно розглянемо знаходження відстані від заданої точки площини до координатним осямПро х та Про у.

У прямокутній системі координат у осі О у є рівняння прямої, яке є неповним має види х = 0, а О х - y = 0. Рівняння нормальні для осей координат, тоді необхідно знайти відстань від точки з координатами M 1 x 1 , y 1 до прямих. Це робиться, виходячи з формул M 1 H 1 = x 1 і M 1 H 1 = y 1 . Розглянемо малюнку, наведеному нижче.

Приклад 4

Знайти відстань від точки M 1 (6 - 7) до координатних прямих, розташованих у площині О х у.

Рішення

Так як рівняння у = 0 відноситься до прямої Ох, можна знайти відстань від M 1 із заданими координатами, до цієї прямої, використовуючи формулу. Отримуємо, що 6 = 6 .

Так як рівняння х = 0 відноситься до прямої О у, то можна знайти відстань від М 1 до цієї прямої за формулою. Тоді отримаємо, що – 7 = 7 .

Відповідь:відстань від М 1 до О х має значення 6 а від М 1 до О у має значення 7 .

Коли в тривимірному просторі маємо точку з координатами M 1 (x 1 , y 1 , z 1) необхідно знайти відстань від точки A до прямої a .

Розглянемо два способи, які дозволяють проводити обчислення відстань від точки до прямої a розташованої в просторі. Перший випадок розглядає відстань від точки М 1 до прямої, де точка на прямій називається Н 1 є підставою перпендикуляра, проведеного з точки М 1 на пряму a . Другий випадок говорить про те, що точки цієї площини необхідно шукати як висоту паралелограма.

Перший спосіб

З визначення маємо, що відстань від точки М 1 розташованої на прямій а є довжиною перпендикуляра М 1 Н 1 тоді отримаємо, що при знайдених координатах точки Н 1 тоді знайдемо відстань між M 1 (x 1 , y 1 , z 1 ) і H 1 (x 1 , y 1 , z 1) , виходячи з формули M 1 H 1 = x 2 - x 1 2 + y 2 - y 1 2 + z 2 - z 1 2 .

Отримуємо, що рішення йде до того, щоб знайти координати підстави перпендикуляра, проведеного з М 1 на пряму a . Це робиться наступним чином: Н 1 є точкою, де перетинаються пряма a з площиною, яка проходить через задану точку.

Отже, алгоритм визначення відстані від точки M 1 (x 1 , y 1 , z 1) до прямої a простору має на увазі кілька пунктів:

Визначення 5

  • складання рівняння площини в якості рівняння площини, що проходить через задану точку, що знаходиться перпендикулярно прямий;
  • визначення координат (x 2 , y 2 , z 2) , що належали точці Н 1 , яка є точкою перетину прямої і площини χ ;
  • обчислення відстані від точки до прямої за допомогою формули M 1 H 1 = x 2 - x 1 2 + y 2 - y 1 2 + z 2 - z 1 2 .

Другий спосіб

З умови маємо пряму a тоді можемо визначити напрямний вектор a → = a x , a y , a z з координатами x 3 , y 3 , z 3 і певної точки М 3 , що належить прямий a . За наявності координат точок M 1 (x 1 , y 1) і M 3 x 3 , y 3 , z 3 можна провести обчислення M 3 M 1 → :

M 3 M 1 → = (x 1 - x 3 , y 1 - y 3 , z 1 - z 3)

Слід відкласти вектори a → = a x , a y , a z і M 3 M 1 → = x 1 - x 3 , y 1 - y 3 , z 1 - z 3 з точки М 3 з'єднаємо і отримаємо фігуру паралелограма. М1Н1 є висотою паралелограма.

Розглянемо малюнку, наведеному нижче.

Маємо, що висота М1Н1 є шуканою відстанню, тоді необхідно знайти її за формулою. Тобто шукаємо M1H1.

Позначимо площу паралелограма за букву S знаходиться за формулою, використовуючи вектор a → = (a x , a y , a z) і M 3 M 1 → = x 1 - x 3 . y 1 - y 3 , z 1 - z 3 . Формула площі має вигляд S = a → × M 3 M 1 → . Також площа фігури дорівнює добутку довжин його сторін на висоту, отримаємо, що S = a → · M 1 H 1 з a → = a x 2 + a y 2 + a z 2 є довжиною вектора a → = (a x , a y , a z) , що дорівнює стороні паралелограма. Отже, M 1 H 1 є відстанню від точки до прямої. Її знаходження здійснюється за формулою M 1 H 1 = a → × M 3 M 1 → a → .

Для знаходження відстані від точки з координатами M 1 (x 1 , y 1 , z 1) до прямої в просторі, необхідно виконати кілька пунктів алгоритму:

Визначення 6

  • визначення напрямного вектора прямий a - a → = (a x, a, z);
  • обчислення довжини напрямного вектора a → = a x 2 + a y 2 + a z 2;
  • отримання координат x 3 , y 3 , z 3 , що належали точці М 3 знаходиться на прямій а;
  • обчислення координат вектора M 3 M 1 → ;
  • знаходження векторного твору векторів a → (a x , a y , a z) і M 3 M 1 → = x 1 - x 3 , y 1 - y 3 , z 1 - z 3 як a → × M 3 M 1 → = i → j → k → a x a y z x 1 - x 3 y 1 - y 3 z 1 - z 3 для отримання довжини за формулою a → × M 3 M 1 → ;
  • обчислення відстані від точки до прямої M 1 H 1 = a → × M 3 M 1 → a → .

Розв'язання задач на знаходження відстані від заданої точки до заданої прямої у просторі

Приклад 5

Знайти відстань від точки з координатами M 1 2 , - 4 , - 1 до прямої x + 1 2 = y - 1 = z + 5 5 .

Рішення

Перший спосіб починається із запису рівняння площини χ, що проходить через М 1 і перпендикулярно заданій точці. Отримуємо вираз виду:

2 · (x - 2) - 1 · (y - (- 4)) + 5 · (z - (- 1)) = 0 ⇔ 2 x - y + 5 z - 3 = 0

Потрібно знайти координати точки H 1 , яка є точкою перетину з площиною до заданої за умовою прямої. Слід переходити від канонічного вигляду до того, що перетинається. Тогла отримуємо систему рівнянь виду:

x + 1 2 = y - 1 = z + 5 5 ⇔ - 1 · (x + 1) = 2 · y 5 · (x + 1) = 2 · (z + 5) 5 · y = - 1 · (z + 5) ⇔ x + 2 y + 1 = 0 5 x - 2 z - 5 = 0 5 y + z + 5 = 0 ⇔ x + 2 y + 1 = 0 5 x - 2 z - 5 = 0

Необхідно обчислити систему x + 2 y + 1 = 0 5 x - 2 z - 5 = 0 2 x - y + 5 z - 3 = 0 ⇔ x + 2 y = - 1 5 x - 2 z = 5 2 x - y + 5 z = 3 за методом Крамера, тоді отримуємо, що:

∆ = 1 2 0 5 0 - 2 2 - 1 5 = - 60 ∆ x = - 1 2 0 5 0 - 2 3 - 1 5 = - 60 ⇔ x = ∆ x ∆ = - 60 - 60 = 1 ∆ y = 1 - 1 0 5 5 2 2 3 5 = 60 ⇒ y = ∆ y ∆ = 60 - 60 = - 1 ∆ z = 1 2 - 1 5 0 5 2 - 1 3 = 0 ⇒ z = ∆ z ∆ = 0 - 60 = 0

Звідси маємо, що H 1 (1, - 1, 0).

M 1 H 1 = 1 - 2 2 + - 1 - - 4 2 + 0 - - 1 2 = 11

Другий спосіб необхідно почати з пошуку координат у канонічному рівнянні. Для цього необхідно звернути увагу на знаменники дробу. Тоді a → = 2 , - 1 , 5 є напрямним вектором прямої x + 1 2 = y - 1 = z + 5 5 . Необхідно обчислити довжину за формулою a → = 2 2 + (-1) 2 + 5 2 = 30 .

Зрозуміло, що пряма x + 1 2 = y - 1 = z + 5 5 перетинає точку M 3 (- 1 , 0 , - 5) , звідси маємо, що вектор з початком координат M 3 (- 1 , 0 , - 5) та її кінцем у точці M 1 2 , - 4 , - 1 є M 3 M 1 → = 3 , - 4 , 4 . Знаходимо векторний витвір a → = (2, - 1, 5) і M 3 M 1 → = (3, - 4, 4).

Ми отримуємо вираз виду a → × M 3 M 1 → = i → j → k → 2 - 1 5 3 - 4 4 = - 4 · i → + 15 · j → - 8 · k → + 20 · i → - 8 · j → = 16 · i → + 7 · j → - 5 · k →

отримуємо, що довжина векторного твору дорівнює a → × M 3 M 1 → = 16 2 + 7 2 + - 5 2 = 330 .

Є всі дані для використання формули обчислення відстані від точки для прямої, тому застосуємо її та отримаємо:

M 1 H 1 = a → × M 3 M 1 → a → = 330 30 = 11

Відповідь: 11 .

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter

Вміння знаходити відстань між різними геометричними об'єктами є важливим, коли виконуються розрахунки площі поверхні фігур та їх обсягів. У цій статті розглянемо питання про те, як знаходити від точки до прямої відстань у просторі та на площині.

Математичний опис прямий

Щоб зрозуміти, як знаходити відстань від точки до прямої, слід розібратися з математичним завданням цих геометричних об'єктів.

З точкою все просто, вона описується набором координат, кількість яких відповідає мірності простору. Наприклад, на площині це дві координати, у тривимірному просторі – три.

Що ж до одномірного об'єкта - прямий, то її описи застосовують кілька видів рівнянь. Розглянемо лише два з них.

Перший вид називається векторним рівнянням. Нижче наведено вирази для прямих у тривимірному та двовимірному просторі:

(x; y; z) = (x 0 ; y 0 ; z 0) + α × (a; b; c);

(x; y) = (x 0 ; y 0) + α × (a; b)

У цих виразах координати з нульовими індексами описують точку, через яку проходить задана пряма, набір координат (a; b; c) і (a; b) - це так звані напрямні вектора для відповідної прямої, - це параметр, який може приймати будь-яке дійсне значення.

Векторне рівняння зручно в тому плані, що воно явно містить вектор напряму прямий, координати якого можна використовувати при розв'язанні задач паралельності або перпендикулярності різних геометричних об'єктів, наприклад двох прямих.

Другий вид рівняння, який ми розглянемо для прямої, називається загальним. У просторі цей вид задається загальними рівняннями двох площин. На площині він має таку форму:

A × x + B × y + C = 0

Коли виконують побудову графіка, його часто записують залежністю від икса/игрека, тобто:

y = -A / B × x + (-C / B)

Тут вільний член -C/B відповідає координаті перетину прямої з віссю y, а коефіцієнт -A/B пов'язаний з кутом нахилу прямої до осі x.

Поняття про відстань між прямою і точкою

Розібравшись із рівняннями, можна безпосередньо переходити до відповіді на питання про те, як знаходити від точки до прямої відстані. У 7 класі школи починають розглядати це питання із визначення відповідної величини.

Відстанню між прямою і точкою називається довжина перпендикулярного цієї прямої відрізка, який опущений з точки, що розглядається. Нижче на малюнку зображено пряму r і точку A. Синім кольором показаний перпендикулярний прямий r відрізок. Його довжина є шуканою відстанню.

Тут зображено двовимірний випадок, проте дане визначеннявідстані справедливо й у тривимірної задачи.

Необхідні формули

Залежно від того, в якому вигляді записано рівняння прямої і в якому просторі вирішується завдання, можна навести дві основні формули, що дають відповідь на питання про те, як знайти відстань між прямою і точкою.

Позначимо відому точку символом P 2 . Якщо рівняння прямої задано у векторному вигляді, то для d відстані між об'єктами, що розглядаються, справедлива формула:

d = | / |v¯|

Тобто для визначення d слід обчислити модуль векторного твору напрямного для прямої вектора v і вектора P 1 P 2 , початок якого лежить в довільній точці P 1 на прямій, а кінець знаходиться в точці P 2 потім поділити цей модуль на довжину v ¯. Ця формула є універсальною для плоского та тривимірного простору.

Якщо завдання розглядається на площині в системі координат xy і рівняння прямої задано загальному виглядітоді наступна формула знайти відстань від прямої до точки дозволяє так:

Пряма: A x x + B x y + C = 0;

Крапка: P 2 (x 2 ; y 2 ​​; z 2);

Відстань: d = | A × x 2 + B × y 2 + C | /√(A 2 + B 2)

Наведена формула досить проста, проте її використання обмежено зазначеними вище умовами.

Координати проекції точки на пряму та відстань

Відповісти на питання про те, як знаходити відстань від точки до прямої, можна також іншим способом, що не передбачає запам'ятовування наведених формул. Цей спосіб полягає у визначенні точки на прямій, яка є проекцією вихідної точки.

Припустимо, що є точка M та пряма r. Проекція на точки M відповідає деякій точці M 1 . Відстань від M до r дорівнює довжині вектора MM 1.

Як знайти координати M1? Дуже просто. Досить, що вектор прямий v буде перпендикулярний MM 1 , тобто їх скалярне твір має дорівнювати нулю. Додаючи до цієї умови той факт, що координати M1 повинні задовольняти рівняння прямої r, ми отримуємо систему простих лінійних рівнянь. В результаті її рішення виходять координати проекції точки M на r.

Описана в цьому пункті методика знаходження відстані від прямої до точки може використовуватися для площини та простору, проте її застосування передбачає знання векторного рівняння для прямої.

Завдання на площині

Тепер настав час показати, як використовувати представлений математичний апарат для вирішення реальних завдань. Припустимо, що у площині задана точка M(-4; 5). Необхідно відстань знайти від точки М до прямої, яка описується рівнянням загального вигляду:

3 × (-4) + 6 = -6 ≠ 5

Тобто M не лежить на прямій.

Оскільки рівняння прямої задано не в загальному вигляді, наведемо його до такого, щоб мати можливість скористатися відповідною формулою, маємо:

y = 3 × x + 6 =>

3 × x - y + 6 = 0

Тепер можна підставляти відомі числа у формулу для d:

d = |A × x 2 + B × y 2 + C | /√(A 2 +B 2) =

= | 3 × (-4) -1 × 5 +6 | / √(3 2 +(-1) 2) = 11 / √10 ≈ 3,48

Завдання у просторі

Тепер розглянемо випадок у просторі. Нехай пряма описується наступним рівнянням:

(x; y; z) = (1; -1 ; 0) + α × (3; -2; 1)

Чому дорівнює відстань від неї до точки M(0; 2; -3)?

Так само, як і в попередньому випадку, перевіримо належність M заданої прямої. Для цього підставимо координати в рівняння та перепишемо його у явному вигляді:

x = 0 = 1 + 3 × α => α = -1/3;

y = 2 = -1 -2 × α => α = -3/2;

Оскільки отримані різні параметри, то M не лежить на цій прямій. Розрахуємо тепер відстань від неї до прямої.

Щоб скористатися формулою d, візьмемо довільну точку на прямій, наприклад P(1; -1; 0), тоді:

Обчислимо векторний добуток між PM і напрямним вектором прямий v. Отримуємо:

= [(-1; 3; -3) * (3; -2; 1)] = (-3; -8; -7)

Тепер підставляємо модулі знайденого вектора і вектора v формулу для d, отримуємо:

d = √(9 + 64 + 49) / √(9 + 4 + 1) ≈ 2,95

Цю відповідь можна було отримати, скориставшись описаною вище методикою, що передбачає вирішення системи лінійних рівнянь. У цій та попередній задачах обчислені значення відстані від прямої до точки представлені в одиницях відповідної системи координат.

О-о-о-о-о… ну і жерсть, наче вам сам собі вирок зачитав =) Втім, потім релаксація допоможе, тим більше сьогодні купив відповідні аксесуари. Тому приступимо до першого розділу, сподіваюся, до кінця статті збережу бадьорий настрій.

Взаємне розташування двох прямих

Той випадок, коли зал підспівує хором. Дві прямі можуть:

1) збігатися;

2) бути паралельними: ;

3) чи перетинатися у єдиній точці: .

Довідка для чайників : будь ласка, запам'ятайте математичний знак перетину, він буде зустрічатися дуже часто. Запис позначає, що пряма перетинається із прямою в точці .

Як визначити взаємне розташування двох прямих?

Почнемо з першого випадку:

Дві прямі збігаються, тоді й лише тоді, коли їхні відповідні коефіцієнти пропорційнітобто існує така кількість «лямбда», що виконуються рівності

Розглянемо прямі та складемо три рівняння з відповідних коефіцієнтів: . З кожного рівняння випливає, що отже дані прямі збігаються.

Дійсно, якщо всі коефіцієнти рівняння помножити на -1 (змінити знаки), і всі коефіцієнти рівняння скоротити на 2, то вийде те саме рівняння: .

Другий випадок, коли прямі паралельні:

Дві прямі паралельні тоді і лише тоді, коли їх коефіцієнти при змінних пропорційні: , але.

Як приклад розглянемо дві прямі. Перевіряємо пропорційність відповідних коефіцієнтів при змінних:

Однак цілком очевидно, що .

І третій випадок, коли прямі перетинаються:

Дві прямі перетинаються, тоді і лише тоді, коли їх коефіцієнти при змінних не пропорційнітобто НЕ існує такого значення «лямбда», щоб виконувались рівності

Так, для прямих складемо систему:

З першого рівняння випливає, що , а з другого рівняння: , отже, система несумісна (Рішень немає). Таким чином, коефіцієнти за змінних не пропорційні.

Висновок: прямі перетинаються

У практичних завданнях можна використати щойно розглянуту схему рішення. Вона, до речі, дуже нагадує алгоритм перевірки векторів на колінеарність, що ми розглядали на уроці. Концепція лінійної (не) залежності векторів. Базис векторів . Але існує більш цивілізована упаковка:

Приклад 1

З'ясувати взаємне розташування прямих:

Рішеннязасноване на дослідженні напрямних векторів прямих:

а) З рівнянь знайдемо напрямні вектори прямих: .


Отже, вектори не колінеарні і прямі перетинаються.

Про всяк випадок поставлю на роздоріжжі камінь із покажчиками:

Інші перестрибують камінь і йдуть далі, прямо до Кащі Безсмертного =)

б) Знайдемо напрямні вектори прямих:

Прямі мають той самий напрямний вектор, отже, вони або паралельні, або збігаються. Тут і визначник рахувати не треба.

Вочевидь, що коефіцієнти при невідомих пропорційні, у своїй .

З'ясуємо, чи справедлива рівність:

Таким чином,

в) Знайдемо напрямні вектори прямих:

Обчислимо визначник, складений координат даних векторів:
отже, напрямні вектори колінеарні. Прямі або паралельні або збігаються.

Коефіцієнт пропорційності «лямбда» неважко побачити прямо із співвідношення колінеарних напрямних векторів. Втім, його можна знайти і через коефіцієнти самих рівнянь: .

Тепер з'ясуємо, чи справедлива рівність. Обидва вільні члени нульові, тому:

Отримане значення задовольняє даному рівнянню (йому задовольняє будь-яке число).

Отже, прямі збігаються.

Відповідь:

Дуже скоро ви навчитеся (або навіть вже навчилися) вирішувати розглянуте завдання усно буквально за лічені секунди. У зв'язку з цим не бачу сенсу пропонувати щось для самостійного рішення, краще закладемо ще одну важливу цеглу в геометричний фундамент:

Як побудувати пряму, паралельну даній?

За незнання цієї найпростішого завданнясуворо карає Соловей-Розбійник.

Приклад 2

Пряма задана рівнянням. Скласти рівняння паралельної прямої, яка проходить через точку .

Рішення: Позначимо невідому пряму буквою . Що про неї сказано за умови? Пряма проходить через крапку. А якщо прямі паралельні, то очевидно, що напрямний вектор прямий це підійде і для побудови прямої де.

Витягуємо напрямний вектор із рівняння:

Відповідь:

Геометрія прикладу виглядає невигадливо:

Аналітична ж перевірка полягає у наступних кроках:

1) Перевіряємо, що у прямих той самий напрямний вектор (якщо рівняння прямої не спрощено належним чином, то вектори будуть колінеарні).

2) Перевіряємо, чи точка задовольняє отриманому рівнянню .

Аналітичну перевірку здебільшого легко виконати усно. Подивіться на два рівняння, і багато хто з вас швидко визначить паралельність прямих без будь-якого креслення.

Приклади для самостійного вирішення сьогодні будуть творчими. Тому що вам ще доведеться тягатися з Бабою-Ягою, а вона, знаєте, любителька всяких загадок.

Приклад 3

Скласти рівняння прямої, що проходить через точку, паралельну до прямої, якщо

Існує раціональний і дуже раціональний спосіб рішення. Найкоротший шлях – наприкінці уроку.

З паралельними прямими трохи попрацювали і до них повернемося. Випадок прямих, що збігаються, малоцікавий, тому розглянемо завдання, яке добре знайоме вам з шкільної програми:

Як знайти точку перетину двох прямих?

Якщо прямі перетинаються в точці , її координати є рішенням системи лінійних рівнянь

Як знайти точку перетину прямих? Вирішити систему.

Ось вам і геометричний сенс системи двох лінійних рівнянь із двома невідомими– це дві перетинаються (найчастіше) прямі на площині.

Приклад 4

Знайти точку перетину прямих

Рішення: Існують два способи рішення – графічний та аналітичний

Графічний спосібполягає в тому, щоб просто накреслити дані прямі і дізнатися про точку перетину безпосередньо з креслення:

Ось наша точка: . Для перевірки слід підставити її координати у кожне рівняння прямої, вони мають підійти і там, і там. Інакше кажучи, координати точки є рішенням системи . По суті ми розглянули графічний спосіб рішення системи лінійних рівнянь із двома рівняннями, двома невідомими.

Графічний спосіб, звичайно, непоганий, але є помітні мінуси. Ні, справа не в тому, що так вирішують семикласники, справа в тому, що на правильний і точний креслення піде час. Крім того, деякі прямі побудувати не так просто, та й сама точка перетину може знаходитися десь у тридесятому царстві за межами зошитового листа.

Тому точку перетину доцільніше шукати аналітичним методом. Вирішимо систему:

Для вирішення системи використано метод почленного складання рівнянь. Щоб напрацювати відповідні навички, відвідайте урок Як розв'язати систему рівнянь?

Відповідь:

Перевірка тривіальна – координати точки перетину мають задовольняти кожному рівнянню системи.

Приклад 5

Знайти точку перетину прямих у разі, якщо вони перетинаються.

Це приклад самостійного рішення. Завдання зручно розбити на кілька етапів. Аналіз умови підказує, що необхідно:
1) Скласти рівняння прямої.
2) Скласти рівняння прямої.
3) З'ясувати взаємне розташування прямих.
4) Якщо прямі перетинаються, то знайти точку перетину.

Розробка алгоритму дій типова для багатьох геометричних завдань, і я на цьому неодноразово загострюватиму увагу.

Повне рішення та відповідь наприкінці уроку:

Ще не стоптана і пара черевиків, як ми підібралися до другого розділу уроку:

Перпендикулярні до прямих. Відстань від точки до прямої.
Кут між прямими

Почнемо з типового та дуже важливого завдання. У першій частині ми дізналися, як побудувати пряму, паралельну даній, а зараз хатинка на курячих ніжках розгорнеться на 90 градусів:

Як побудувати пряму, перпендикулярну даній?

Приклад 6

Пряма задана рівнянням. Скласти рівняння перпендикулярної прямої, що проходить через точку.

Рішення: За умовою відомо, що . Непогано знайти напрямний вектор прямий . Оскільки прямі перпендикулярні, фокус простий:

З рівняння «знімаємо» вектор нормалі: , який і буде напрямним вектором прямий .

Рівняння прямої складемо по точці і напрямному вектору:

Відповідь:

Розгорнемо геометричний етюд:

М-да… Помаранчеве небо, помаранчеве море, помаранчевий верблюд.

Аналітична перевірка рішення:

1) З рівнянь витягуємо напрямні вектори та за допомогою скалярного твору векторів приходимо до висновку, що прямі справді перпендикулярні: .

До речі, можна використовувати вектори нормалі, це простіше.

2) Перевіряємо, чи задовольняє точка отриманого рівняння .

Перевірку, знову ж таки, легко виконати усно.

Приклад 7

Знайти точку перетину перпендикулярних прямих, якщо відомо рівняння і крапка .

Це приклад самостійного рішення. У завданні кілька дій, тому рішення зручно оформити за пунктами.

Наша захоплююча подорож продовжується:

Відстань від точки до прямої

Перед нами пряма смуга річки і наше завдання полягає в тому, щоб дійти до неї найкоротшим шляхом. Перешкод немає, і найоптимальнішим маршрутом буде рух перпендикуляром. Тобто відстань від точки до прямої – це довжина перпендикулярного відрізка.

Відстань у геометрії традиційно позначають грецькою літерою "ро", наприклад: - Відстань від точки "ем" до прямої "де".

Відстань від точки до прямої виражається формулою

Приклад 8

Знайти відстань від точки до прямої

Рішення: все, що потрібно, це акуратно підставити числа в формулу і провести обчислення:

Відповідь:

Виконаємо креслення:

Знайдена відстань від точки до прямої – це точно довжина червоного відрізка. Якщо оформити креслення на картатому папері в масштабі 1 од. = 1 см (2 клітини), то відстань можна виміряти звичайною лінійкою.

Розглянемо ще одне завдання з цього ж креслення:

Завдання полягає в тому, щоб знайти координати точки , яка симетрична точці щодо прямої . Пропоную виконати дії самостійно, проте позначу алгоритм рішення із проміжними результатами:

1) Знаходимо пряму, яка перпендикулярна до прямої.

2) Знаходимо точку перетину прямих: .

Обидві дії детально розібрані в рамках цього уроку.

3) Крапка є серединою відрізка. Нам відомі координати середини та одного з кінців. за формулам координат середини відрізка знаходимо.

Не зайвим буде перевірити, що відстань також дорівнює 2,2 одиницям.

Труднощі тут можуть виникнути у обчисленнях, але у вежі чудово рятує мікрокалькулятор, що дозволяє вважати звичайні дроби. Неодноразово радив, пораджу й знову.

Як знайти відстань між двома паралельними прямими?

Приклад 9

Знайти відстань між двома паралельними прямими

Це ще один приклад для самостійного рішення. Трохи підкажу: тут безліч способів вирішення. Розбір польотів наприкінці уроку, але краще постарайтеся здогадатися самі, гадаю, вашу кмітливість вдалося непогано розігнати.

Кут між двома прямими

Що ні кут, то косяк:


У геометрії за кут між двома прямими приймається МЕНШИЙ кут, з чого автоматично випливає, що він не може бути тупим. На малюнку кут, позначений червоною дугою, не вважається кутом між прямими, що перетинаються. А вважається таким його «зелений» сусід чи протилежно орієнтований"малиновий" кут.

Якщо прямі перпендикулярні, то за кут між ними можна приймати будь-який із 4 кутів.

Чим відрізняються кути? орієнтацією. По-перше, принципово важливим є напрямок «прокручування» кута. По-друге, негативно орієнтований кут записується зі знаком мінус, наприклад, якщо .

Навіщо це я розповів? Начебто можна обійтися і звичайним поняттям кута. Справа в тому, що у формулах, за якими ми знаходитимемо кути, запросто може вийти негативний результат, і це не повинно застати вас зненацька. Кут зі знаком «мінус» нічим не гірший і має цілком конкретний геометричний зміст. На кресленні для негативного кута слід обов'язково вказувати стрілкою його орієнтацію (за годинниковою стрілкою).

Як знайти кут між двома прямими?Існують дві робочі формули:

Приклад 10

Знайти кут між прямими

Рішенняі Спосіб перший

Розглянемо дві прямі, задані рівняннями у загальному вигляді:

Якщо прямі не перпендикулярні, то орієнтованийкут між ними можна обчислити за допомогою формули:

Найпильнішу увагу звернемо на знаменник – це точно скалярний твір напрямних векторів прямих:

Якщо , то знаменник формули перетворюється на нуль, а вектори будуть ортогональні і прямі перпендикулярні. Саме тому зроблено застереження про неперпендикулярність прямих у формулюванні.

Виходячи з вищесказаного, рішення зручно оформити у два кроки:

1) Обчислимо скалярний добуток напрямних векторів прямих:
, Отже, прямі не перпендикулярні.

2) Кут між прямими знайдемо за формулою:

За допомогою зворотної функціїлегко знайти й сам кут. У цьому використовуємо непарність арктангенса (див. Графіки та властивості елементарних функцій ):

Відповідь:

У відповіді вказуємо точне значення, а також наближене значення (бажано і в градусах, і радіанах), обчислене за допомогою калькулятора.

Ну, мінус, то мінус, нічого страшного. Ось геометрична ілюстрація:

Не дивно, що кут вийшов негативною орієнтацією, адже за умови завдання першим номером йде пряма і «відкрутка» кута почалася саме з неї.

Якщо дуже хочеться отримати позитивний кут, потрібно поміняти прямі місцями, тобто коефіцієнти взяти з другого рівняння , а коефіцієнти взяти з першого рівняння. Коротше кажучи, почати потрібно з прямої .

Формула для обчислення відстані від точки до прямої на площині

Якщо задано рівняння прямої Ax + By + C = 0, то відстань від точки M(M x , M y) до прямої можна знайти, використовуючи таку формулу

Приклади завдань на обчислення відстані від точки до прямої на площині

приклад 1.

Знайти відстань між прямою 3x + 4y - 6 = 0 та точкою M(-1, 3).

Рішення.Підставимо у формулу коефіцієнти прямої та координати точки

Відповідь:відстань від точки до прямої дорівнює 0.6.

рівняння площини перпендикулярно вектору, що проходить через точки Загальне рівняння площини

Ненульовий вектор , перпендикулярний заданій площині, називається нормальним вектором (або, коротше, нормаллю ) для цієї площини.

Нехай у координатному просторі (у прямокутній системі координат) задані:

а) точка ;

б) ненульовий вектор (рис.4.8 а).

Потрібно скласти рівняння площини, що проходить через точку перпендикулярно вектору Кінець підтвердження.

Розглянемо тепер різні типирівнянь прямої на площині.

1) Загальне рівняння площиниP .

З висновку рівняння випливає, що одночасно A, Bі Cне рівні 0 (поясніть чому).

Крапка належить площині Pтільки у тому випадку, коли її координати задовольняють рівняння площини. Залежно від коефіцієнтів A, B, Cі Dплощина Pзаймає те чи інше становище:

‑ площина проходить через початок системи координат, ‑ площина не проходить через початок системи координат,

‑ площина паралельна осі X,

X,

‑ площина паралельна осі Y,

‑ площина не паралельна осі Y,

‑ площина паралельна осі Z,

‑ площина не паралельна осі Z.

Доведіть ці твердження самостійно.

Рівняння (6) легко виводиться із рівняння (5). Справді, нехай точка лежить на площині P. Тоді її координати задовольняють рівняння Віднімаючи з рівняння (5) рівняння (7) і групуючи доданки, отримаємо рівняння (6). Розглянемо тепер два вектори з координатами відповідно. З формули (6) випливає, що їх скалярний добуток дорівнює нулю. Отже, вектор перпендикулярний вектору Початок і кінець останнього вектора знаходяться відповідно в точках які належать P. Отже, вектор перпендикулярний площині. P. Відстань від точки до площини P, загальне рівняння якої визначається за формулою Доказ цієї формули повністю аналогічний доказу формули відстані між точкою та прямою (див. рис. 2).
Рис. 2. До висновку формули відстані між площиною та прямою.

Справді, відстань dміж прямою і площиною одно

де - точка лежача на площині. Звідси, як і в лекції № 11, виходить вище наведена формула. Дві площини паралельні, якщо паралельні їхнім нормальним векторам. Звідси отримуємо умову паралельності двох площин - Коефіцієнти загальних рівнянь площин. Дві площини перпендикулярні, якщо перпендикулярні їх нормальні вектори, звідси отримуємо умову перпендикулярності двох площин, якщо відомі їх загальні рівняння

Кут fміж двома площинами дорівнює кутуміж їх нормальними векторами (див. рис. 3) і може, тому, бути обчислений за формулою
Визначення кута між площинами.

(11)

Відстань від точки до площини та способи її знаходження

Відстань від точки до площині- Довжина перпендикуляра, опущеного з точки на цю площину. Існує принаймні два способи знайти відстань від точки до площини: геометричнийі алгебраїчний.

При геометричному способіпотрібно спочатку зрозуміти, як розташований перпендикуляр з точки на площину: може він лежить в якійсь зручній площині, є висотою в якійсь зручному (або не дуже) трикутнику, а може цей перпендикуляр взагалі є висотою в якійсь піраміді.

Після цього першого і найскладнішого етапу завдання розпадається на кілька конкретних планиметричних завдань (можливо, у різних площинах).

При алгебраїчному способіЩоб знайти відстань від точки до площині, потрібно ввести систему координат, знайти координати точки і рівняння площини, і після цього застосувати формулу відстані від точки до площини.